• Title/Summary/Keyword: matrix modification

Search Result 270, Processing Time 0.022 seconds

ADAPTIVE STABILIZATION OF NON NECESSARILY INVERSELY STABLE CONTINUOUS-TIME SYSTEMS BY USING ESTIMATION MODIFICATION WITHOUT USING HYSTERESIS FUNCTION

  • Sen, M.De La
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.29-53
    • /
    • 2001
  • This note presents a an indirect adaptive control scheme for first-order continuous-time systems. The estimated plant model is controllable and then the adaptive scheme is free from singularities. The singularities are avoided through a modification of the estimated plant parameter vector so that its associated Sylvester matrix is guaranteed to be nonsingular. That properties is achieved by ensuring that the absolute value of its determinant does not lie below a positive threshold. A modification scheme based on the achievement of a modified diagonally dominant Sylvester matrix of the parameter estimates is also given as an alternative method. This diagonal dominance is achieved through estimates modification as a way to guarantee the controllability of the modified estimated model when a controllability measure of the ‘a priori’ estimated model fails. In both schemes, the use of a hysteresis switching function for the modification of the estimates is not required to ensure the nonsingularity of the Sylvester matrix of the estimates.

  • PDF

Model Updating Using the Closed-loop Natural Frequency (폐루프 공진 주파수를 이용한 모델 개선법)

  • Jung Hunsang;Park Youngjin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.801-810
    • /
    • 2004
  • Parameter modification of a linear finite element model(FEM) based on modal sensitivity matrix is usually performed through an effort to match FEM modal data to experimental ones. However, there are cases where this method can't be applied successfully; lack of reliable modal data and ill-conditioning of the modal sensitivity matrix constitute such cases. In this research, a novel concept of introducing feedback loops to the conventional modal test setup is proposed. This method uses closed-loop natural frequency data for parameter modification to overcome the problems associated with the conventional method based on modal sensitivity matrix. We proposed the whole procedure of parameter modification using the closed-loop natural frequency data including the modal sensitivity modification and controller design method. Proposed controller design method is efficient in changing modes. Numerical simulation of parameter estimation based on time-domain input/output data is provided to demonstrate the estimation performance of the proposed method.

Matrix Modification for Graphite Furnace Atomic Absorption Spectrophotometric Determination of Volatile Elements(III) Trace Bismuth

  • Kim, Young-Sang;Choi, Jong-Moon;Kim, Young-Man
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.435-442
    • /
    • 1995
  • A matrix modification was studied for the determination of trace bismuth in water samples by graphite furnace atomic absorption spectrophotometry. The type and quantity of modifiers as well as the use of auxiliary modifiers were investigated to realize the efficient modification. Palladium was chosen as a single modifier. By the addition of palladium($5{\mu}g/mL$) to 100 ng/mL bismuth solution, the temperatures could be raised from $500^{\circ}C$ to $1,300^{\circ}C$ for the charring and from $2,000^{\circ}C$ to $2,200^{\circ}C$ for the atomization as well as the sensitivity and reproducibility were improved. The absorbance of bismuth was maximum and not changed in the range of Pd $3-25{\mu}g/mL$. And several materials were examined as an auxiliary modifier. The mixed solution of $1{\mu}g/mL$ palladium and $200{\mu}g/mL$ nickel have raised the temperatures as with $5{\mu}g/mL$ palladium only. The maximum absorbance of bismuth was shown in the nickel concentration range of $100-300{\mu}g/mL$ in $1{\mu}g/mL$ palladium modified system. With such optimum conditions, the trace amount of bismuth in several water samples could be determined by a calibration curve method, and good recoveries were also obtained.

  • PDF

Matrix Modification for Electrothermal Atomic Absorption Spectrophotometric Determination of Trace Manganese in Seaweeds (해조류중 흔적량 망간의 전열원자흡수 분광광도법 정량을 위한 매트릭스 개선에 관한 연구)

  • 최종문;강동수
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.75-81
    • /
    • 2000
  • A matrix modification was studied for the determination of trace manganese in several seaweeds by electrothermal atomic absorption spectrophotometry(ETAAS). The type and quantity of modifiers were investigated to realize the efficient modification. Palladium was chosen as a single modifier. By the addition of palladium(5$\mu\textrm{g}$/$m\ell$) to 2ng/$m\ell$ manganese solution, the temperatures were raised from 1,00$0^{\circ}C$ to 1,20$0^{\circ}C$ for the charring and from 2,10$0^{\circ}C$ to 2,20$0^{\circ}C$ for the atomization as well as the sensitivity and reproducibility were improved. With such optimum conditions, the trace amount of manganese in several seaweeds(laver, tangle and brown seaweed) could be determined by a calibration curve method, and good recoveries of more than 965 were also obtained in the samples in which a given amount of manganese was spiked. The detection limit of this method was about 0.048ng/$m\ell$.

  • PDF

An investigation of tribology properties carbon nanotubes reinforced epoxy composites (표면 개질된 탄소나노튜브를 사용한 에폭시 복합재료의 마모특성에 관한 연구)

  • Sulong A.B.;Goak J.C.;Park Joo-Hyuk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.663-667
    • /
    • 2005
  • Surface modified carbon nanotubes were applied into the epoxy composites to investigate its tribological property. Carbon nanotubes reinforced epoxy composites were fabricated by casting. Effects to the tribological property of loading concentrations and types of surface modification of carbon nanotubes were investigated under sliding condition using linear reciprocal sliding wear tester. The results show that the small amount of carbon nanotubes into the epoxy exhibited lower weight loss than the pure epoxy. It is concluded that the effect of an enormous aspect ratio of carbon nanotubes surface area which wider than conventional fillers that react as interface for stress transfer. As increased the contents of carbon nanotubes, the weight loss from the wear test was reduced. And the surface modified carbon nanotubes show better tribological property than as produced carbon nanotubes. It is due that a surface modification of carbon nanotubes increases the interfacial bonding between carbon nanotubes and epoxy matrix through chemical bonding. Changes in worn surface morphology are also observed by optical microscope and SEM for investigating wear behaviors. Carbon nanotubes in the epoxy matrix near the surface are exposed, because it becomes the lubricating working film on the worn surface. It reduces the friction and results in the lower surface roughness morphology in the epoxy matrix as increasing the contents of the carbon nanotubes.

  • PDF

Evaluation on the Mechanical Performance of Low-Quality Recycled Aggregate Through Interface Enhancement Between Cement Matrix and Coarse Aggregate by Surface Modification Technology

  • Choi, Heesup;Choi, Hyeonggil;Lim, Myungkwan;Inoue, Masumi;Kitagaki, Ryoma;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.87-97
    • /
    • 2016
  • In this study, a quantitative review was performed on the mechanical performance, permeation resistance of concrete, and durability of surface-modified coarse aggregates (SMCA) produced using low-quality recycled coarse aggregates, the surface of which was modified using a fine inorganic powder. The shear bond strength was first measured experimentally and the interface between the SMCA and the cement matrix was observed with field-emission scanning electron microscopy. The results showed that a reinforcement of the interfacial transition zone (ITZ), a weak part of the concrete, by coating the surface of the original coarse aggregate with surface-modification material, can help suppress the occurrence of microcracks and improve the mechanical performance of the aggregate. Also, the use of low-quality recycled coarse aggregates, the surfaces of which were modified using inorganic materials, resulted in improved strength, permeability, and durability of concrete. These results are thought to be due to the enhanced adhesion between the recycled coarse aggregates and the cement matrix, which resulted from the improved ITZ in the interface between a coarse aggregate and the cement matrix.

Fuzzy system identification and modification of fuzzy relation matrix (퍼지 제어규칙의 추정 및 퍼지 연관행렬의 수정화)

  • 이태호;박상배;이균경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.567-572
    • /
    • 1991
  • This paper proposes an algorithm of fuzzy model modification which improves fuzzy relation matrix for multi-input/single output dynamic systems. Zadeh's possibility distribution plays an important role in the proposed algorithm and in the use of fuzzy models which are constructed by the proposed algorithm. The required computer capacity and time for implementing the proposed algorithm and resulting models are significantly reduced by introducing the concept of the referential fuzzy sets. A nonlinear system is given to show that the proposed algorithm can provide the fuzzy model with satisfactory accuracy.

  • PDF

Surface Modified Glass-Fiber Effect on the Mechanical Properties of Glass-Fiber Reinforced Polypropylene Composites

  • Park, Sanghoo;Kim, Su-Jong;Shin, Eun Seob;Lee, Seung Jun;Kang, Beom Mo;Park, Kyu-Hwan;Hong, Seheum;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.182-187
    • /
    • 2019
  • To improve the mechanical properties of glass-fiber-reinforced polypropylene (PP) composites through interfacial adhesion control between the PP matrix and glass fiber, the surface of the glass fiber was modified with PP-graft-maleic anhydride (MAPP). Surface modification of the glass fiber was carried out through the well-known hydrolysis-condensation reaction using 3-aminopropyltriethoxy silane, and then subsequently treated with MAPP to produce the desired MAPP-anchored glass fiber (MAPP-a-GF). The glass-fiber-reinforced PP composites were prepared by typical melt-mixing technique. The effect of chemical modification of the glass fiber surface on the mechanical properties of composites was investigated. The resulting mechanical and morphological properties showed improved interfacial adhesion between the MAPP-a-GF and PP matrix in the composites.

Determination of Arsenic, Lead and Selenium in Rice Flour by Graphite Furnace Atomic Absorption Spectrometry (흑연로원자흡수분광법에 의한 쌀분말시료중의 비소, 납, 셀레늄의 정량)

  • Cho, Kyung-Haeng;Suh, Jung-Ki
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.130-135
    • /
    • 1999
  • A graphite furnace atomic absorption spectrometry (GFAAS) with matrix modification has been used to determine trace amounts of arsenic, lead and selenium in rice flour samples. A mixed solution of palladium and magnesium nitrate was used as a matrix modifier to convert the analyte elements into a phase of higher thermostability and to increase the volatility of concomitants in graphite furnace. Matrix modification effects by the mixed solution were investigated for several elements (As, Cd, Cu, Pb, Se, Zn). It has been found that the matrix modifier substantially increase the pyrolysis and atomization temperature, and absorbance for As, Pb and Se. The concentration of As, Pb and Se in rice flour samples were determined by standard addition method with Zeeman background correction after microwave acid digestion. In this method the characteristic concentrations of As, Pb and Se are 26 ng/g, 18 ng/g, 24 ng/g on the basis of dry sample respectively.

  • PDF

Tuning the surface charge of mixed matrix membranes using novel chemistry

  • Priyanka Mistry;C.N. Murthy
    • Membrane and Water Treatment
    • /
    • v.15 no.3
    • /
    • pp.139-152
    • /
    • 2024
  • Mixed matrix membranes have gained significant recognition in the wastewater treatment industry for their effectiveness in removing dyes, proteins, and heavy metals from water sources. Researchers have developed an innovative technique to enhance properties of these membranes by incorporating amine-functionalized carbon nanotubes into the polymer matrix. This approach introduces amine functional groups onto the membrane surface, which are then modified with trimesoyl chloride and cyanuric chloride. The modified membranes are characterized by XPS to confirm successful bonding of amines with the trimesoyl chloride and cyanuric chloride. The surface charge of the modified membrane also plays a role in the modification process; the membrane modified with trimesoyl chloride has a negative surface charge, while the one modified with cyanuric chloride has a more positive charge. At the same acidic pH, the positive or negative charge of the mixed matrix membranes assists in enhancing the rejection of heavy metals. This results in improved antifouling properties for both modified membranes. The heavy metal rejection for all modified membranes is higher than for unmodified membranes, due to both adsorption and complexation abilities of the functional groups on the membrane surface with heavy metal ions. As the membrane surface functionalities increase through modification, the separation due to complexation also increases. The bulk morphology of the membrane remains unchanged, while roughness slightly increases due to the surface treatment.