• 제목/요약/키워드: matrix learning

검색결과 351건 처리시간 0.041초

시계열 데이터 결측치 처리 기술 동향 (Technical Trends of Time-Series Data Imputation)

  • 김에덴;고석갑;손승철;이병탁
    • 전자통신동향분석
    • /
    • 제36권4호
    • /
    • pp.145-153
    • /
    • 2021
  • Data imputation is a crucial issue in data analysis because quality data are highly correlated with the performance of AI models. Particularly, it is difficult to collect quality time-series data for uncertain situations (for example, electricity blackout, delays for network conditions). Thus, it is necessary to research effective methods of time-series data imputation. Many studies on time-series data imputation can be divided into 5 parts, including statistical based, matrix-based, regression-based, deep learning (RNN and GAN) based methodologies. This study reviews and organizes these methodologies. Recently, deep learning-based imputation methods are developed and show excellent performance. However, it is associated to some computational problems that make it difficult to use in real-time system. Thus, the direction of future work is to develop low computational but high-performance imputation methods for application in the real field.

System simulation and synchronization for optimal evolutionary design of nonlinear controlled systems

  • Chen, C.Y.J.;Kuo, D.;Hsieh, Chia-Yen;Chen, Tim
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.797-807
    • /
    • 2020
  • Due to the influence of nonlinearity and time-variation, it is difficult to establish an accurate model of concrete frame structures that adopt active controllers. Fuzzy theory is a relatively appropriate method but susceptible to human subjective experience to decrease the performance. This paper proposes a novel artificial intelligence based EBA (Evolved Bat Algorithm) controller with machine learning matched membership functions in the complex nonlinear system. The proposed affine transformed membership functions are adopted and stabilization and performance criterion of the closed-loop fuzzy systems are obtained through a new parametrized linear matrix inequality which is rearranged by machine learning affine matched membership functions. The trajectory of the closed-loop dithered system and that of the closed-loop fuzzy relaxed system can be made as close as desired. This enables us to get a rigorous prediction of stability of the closed-loop dithered system by establishing that of the closed-loop fuzzy relaxed system.

Improving Transformer with Dynamic Convolution and Shortcut for Video-Text Retrieval

  • Liu, Zhi;Cai, Jincen;Zhang, Mengmeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권7호
    • /
    • pp.2407-2424
    • /
    • 2022
  • Recently, Transformer has made great progress in video retrieval tasks due to its high representation capability. For the structure of a Transformer, the cascaded self-attention modules are capable of capturing long-distance feature dependencies. However, the local feature details are likely to have deteriorated. In addition, increasing the depth of the structure is likely to produce learning bias in the learned features. In this paper, an improved Transformer structure named TransDCS (Transformer with Dynamic Convolution and Shortcut) is proposed. A Multi-head Conv-Self-Attention module is introduced to model the local dependencies and improve the efficiency of local features extraction. Meanwhile, the augmented shortcuts module based on a dual identity matrix is applied to enhance the conduction of input features, and mitigate the learning bias. The proposed model is tested on MSRVTT, LSMDC and Activity-Net benchmarks, and it surpasses all previous solutions for the video-text retrieval task. For example, on the LSMDC benchmark, a gain of about 2.3% MdR and 6.1% MnR is obtained over recently proposed multimodal-based methods.

Optimizing artificial neural network architectures for enhanced soil type classification

  • Yaren Aydin;Gebrail Bekdas;Umit Isikdag;Sinan Melih Nigdeli;Zong Woo Geem
    • Geomechanics and Engineering
    • /
    • 제37권3호
    • /
    • pp.263-277
    • /
    • 2024
  • Artificial Neural Networks (ANNs) are artificial learning algorithms that provide successful results in solving many machine learning problems such as classification, prediction, object detection, object segmentation, image and video classification. There is an increasing number of studies that use ANNs as a prediction tool in soil classification. The aim of this research was to understand the role of hyperparameter optimization in enhancing the accuracy of ANNs for soil type classification. The research results has shown that the hyperparameter optimization and hyperparamter optimized ANNs can be utilized as an efficient mechanism for increasing the estimation accuracy for this problem. It is observed that the developed hyperparameter tool (HyperNetExplorer) that is utilizing the Covariance Matrix Adaptation Evolution Strategy (CMAES), Genetic Algorithm (GA) and Jaya Algorithm (JA) optimization techniques can be successfully used for the discovery of hyperparameter optimized ANNs, which can accomplish soil classification with 100% accuracy.

다이나믹시스템의 퍼지모델 식별을 통한 퍼지제어 (Fuzzy control by identification of fuzzy model of dynamic systems)

  • 전기준;이평기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.127-130
    • /
    • 1990
  • The fuzzy logic controller which can be applied to various industrial processes is quite often dependent on the heuristics of the experienced operator. The operator's knowledge is often uncertain. Therefore an incorrect control rule on the basis of the operator's information is a cause of bad performance of the system. This paper proposes a new self-learning fuzzy control method by the fuzzy system identification using the data pairs of input and output and arbitrary initial relation matrix. The position control of a DC servo motor model is simulated to verify the effectiveness of the proposed algorithm.

  • PDF

System and Disturbance Identification for Model-Based learning and Repetitive Control

  • 이수철
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2001년도 춘계학술대회논문집:21세기 신지식정보의 창출
    • /
    • pp.145-151
    • /
    • 2001
  • An extension of interaction matrix formulation to the problem of system and disturbance identification for a plant that is corrupter by both process and output disturbances is presented. With only an assumed upper bound on the order of the system and an assumed upper bound on the number of disturbance frequencies, it is shown that both the disturbance-free model and disturbance effect can be recovered exactly from disturbance-corrupted input-output data without direct measurement of the periodic disturbances. The rich information returned by the identification can be used by a performance-oriented model-based loaming or repetitive control system to eliminate unwanted periodic disturbances.

  • PDF

Development of Expert Systems using Automatic Knowledge Acquisition and Composite Knowledge Expression Mechanism

  • Kim, Jin-Sung
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.447-450
    • /
    • 2003
  • In this research, we propose an automatic knowledge acquisition and composite knowledge expression mechanism based on machine learning and relational database. Most of traditional approaches to develop a knowledge base and inference engine of expert systems were based on IF-THEN rules, AND-OR graph, Semantic networks, and Frame separately. However, there are some limitations such as automatic knowledge acquisition, complicate knowledge expression, expansibility of knowledge base, speed of inference, and hierarchies among rules. To overcome these limitations, many of researchers tried to develop an automatic knowledge acquisition, composite knowledge expression, and fast inference method. As a result, the adaptability of the expert systems was improved rapidly. Nonetheless, they didn't suggest a hybrid and generalized solution to support the entire process of development of expert systems. Our proposed mechanism has five advantages empirically. First, it could extract the specific domain knowledge from incomplete database based on machine learning algorithm. Second, this mechanism could reduce the number of rules efficiently according to the rule extraction mechanism used in machine learning. Third, our proposed mechanism could expand the knowledge base unlimitedly by using relational database. Fourth, the backward inference engine developed in this study, could manipulate the knowledge base stored in relational database rapidly. Therefore, the speed of inference is faster than traditional text -oriented inference mechanism. Fifth, our composite knowledge expression mechanism could reflect the traditional knowledge expression method such as IF-THEN rules, AND-OR graph, and Relationship matrix simultaneously. To validate the inference ability of our system, a real data set was adopted from a clinical diagnosis classifying the dermatology disease.

  • PDF

조합형 Fixed Point 알고리즘의 독립성분분석을 이용한 영상의 특징추출 (Image Feature Extraction Using Independent Component Analysis of Hybrid Fixed Point Algorithm)

  • 조용현;강현구
    • 한국산업융합학회 논문집
    • /
    • 제6권1호
    • /
    • pp.23-29
    • /
    • 2003
  • This paper proposes an efficient feature extraction of the images by using independent component analysis(ICA) based on neural networks of the hybrid learning algorithm. The proposed learning algorithm is the fixed point(FP) algorithm based on Newton method and moment. The Newton method, which uses to the tangent line for estimating the root of function, is applied for fast updating the inverse mixing matrix. The moment is also applied for getting the better speed-up by restraining an oscillation due to compute the tangent line. The proposed algorithm has been applied to the 10,000 image patches of $12{\times}12$-pixel that are extracted from 13 natural images. The 144 features of $12{\times}12$-pixel and the 160 features of $16{\times}16$-pixel have been extracted from all patches, respectively. The simulation results show that the extracted features have a localized characteristics being included in the images in space, as well as in frequency and orientation. And the proposed algorithm has better performances of the learning speed than those using the conventional FP algorithm based on Newton method.

  • PDF

A Multi-Level Integrator with Programming Based Boosting for Person Authentication Using Different Biometrics

  • Kundu, Sumana;Sarker, Goutam
    • Journal of Information Processing Systems
    • /
    • 제14권5호
    • /
    • pp.1114-1135
    • /
    • 2018
  • A multiple classification system based on a new boosting technique has been approached utilizing different biometric traits, that is, color face, iris and eye along with fingerprints of right and left hands, handwriting, palm-print, gait (silhouettes) and wrist-vein for person authentication. The images of different biometric traits were taken from different standard databases such as FEI, UTIRIS, CASIA, IAM and CIE. This system is comprised of three different super-classifiers to individually perform person identification. The individual classifiers corresponding to each super-classifier in their turn identify different biometric features and their conclusions are integrated together in their respective super-classifiers. The decisions from individual super-classifiers are integrated together through a mega-super-classifier to perform the final conclusion using programming based boosting. The mega-super-classifier system using different super-classifiers in a compact form is more reliable than single classifier or even single super-classifier system. The system has been evaluated with accuracy, precision, recall and F-score metrics through holdout method and confusion matrix for each of the single classifiers, super-classifiers and finally the mega-super-classifier. The different performance evaluations are appreciable. Also the learning and the recognition time is fairly reasonable. Thereby making the system is efficient and effective.

학습부진학생을 위한 사이버 가정학습 2.0 교수학습과정 분석 (Analysis of Instruction-Learning Process for Underachievers thorough Cyber Home Learning System 2.0)

  • 이정민;최용훈;이명근
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제45차 동계학술발표논문집 20권1호
    • /
    • pp.159-162
    • /
    • 2012
  • 이 연구에서는 사회과 학습부진학생의 부진 원인을 규명하고 사이버 가정학습 2.0을 통해서 일어나는 인식변화과정의 분석을 통해 사이버 가정학습 2.0 시스템에 맞는 상황모형을 도출하였다. 수집된 자료는 근거이론을 통해 분석하였으며, 사회과 학습부진학생이 느끼는 부진 원인에는 인지적 영역과 정의적 영역이 함께 규명됐고, 사이버 가정학습 2.0을 통해 사회과 학습부진학생들은 부정적 인식을 긍정적으로 변화시켜감을 알 수 있었다. 특히 과정분석을 통해 상황모형을 도출한 결과 사회과 학습부진학생을 위한 사이버 가정학습 2.0 문제해결학습 모형이 도출하였는 바, 크게 도입, 문제규명, 탐색, 수행, 정리 및 평가의 다섯 단계로 나뉘어지는 것이었다. 향후에는 보다 장기간의 연구를 통해 학습부진학생의 가족과 또래관계의 분석이 포함된 연구나 사이버 가정학습 2.0과 교실수업을 보다 유기적으로 연계한 연구가 요청된다.

  • PDF