• Title/Summary/Keyword: matrix learning

Search Result 357, Processing Time 0.027 seconds

An Experimental Investigation of the Application of Artificial Neural Network Techniques to Predict the Cyclic Polarization Curves of AL-6XN Alloy with Sensitization

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.62-68
    • /
    • 2021
  • Artificial neural network techniques show an excellent ability to predict the data (output) for various complex characteristics (input). It is primarily specialized to solve nonlinear relationship problems. This study is an experimental investigation that applies artificial neural network techniques and an experimental design to predict the cyclic polarization curves of the super-austenitic stainless steel AL-6XN alloy with sensitization. A cyclic polarization test was conducted in a 3.5% NaCl solution based on an experimental design matrix with various factors (degree of sensitization, temperature, pH) and their levels, and a total of 36 cyclic polarization data were acquired. The 36 cyclic polarization patterns were used as training data for the artificial neural network model. As a result, the supervised learning algorithms with back-propagation showed high learning and prediction performances. The model showed an excellent training performance (R2=0.998) and a considerable prediction performance (R2=0.812) for the conditions that were not included in the training data.

Deep Learning Application of Gamma Camera Quality Control in Nuclear Medicine (핵의학 감마카메라 정도관리의 딥러닝 적용)

  • Jeong, Euihwan;Oh, Joo-Young;Lee, Joo-Young;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.461-467
    • /
    • 2020
  • In the field of nuclear medicine, errors are sometimes generated because the assessment of the uniformity of gamma cameras relies on the naked eye of the evaluator. To minimize these errors, we created an artificial intelligence model based on CNN algorithm and wanted to assess its usefulness. We produced 20,000 normal images and partial cold region images using Python, and conducted artificial intelligence training with Resnet18 models. The training results showed that accuracy, specificity and sensitivity were 95.01%, 92.30%, and 97.73%, respectively. According to the results of the evaluation of the confusion matrix of artificial intelligence and expert groups, artificial intelligence was accuracy, specificity and sensitivity of 94.00%, 91.50%, and 96.80%, respectively, and expert groups was accuracy, specificity and sensitivity of 69.00%, 64.00%, and 74.00%, respectively. The results showed that artificial intelligence was better than expert groups. In addition, by checking together with the radiological technologist and AI, errors that may occur during the quality control process can be reduced, providing a better examination environment for patients, providing convenience to radiologists, and improving work efficiency.

Classification of Livestock Diseases Using GLCM and Artificial Neural Networks

  • Choi, Dong-Oun;Huan, Meng;Kang, Yun-Jeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.173-180
    • /
    • 2022
  • In the naked eye observation, the health of livestock can be controlled by the range of activity, temperature, pulse, cough, snot, eye excrement, ears and feces. In order to confirm the health of livestock, this paper uses calf face image data to classify the health status by image shape, color and texture. A series of images that have been processed in advance and can judge the health status of calves were used in the study, including 177 images of normal calves and 130 images of abnormal calves. We used GLCM calculation and Convolutional Neural Networks to extract 6 texture attributes of GLCM from the dataset containing the health status of calves by detecting the image of calves and learning the composite image of Convolutional Neural Networks. In the research, the classification ability of GLCM-CNN shows a classification rate of 91.3%, and the subsequent research will be further applied to the texture attributes of GLCM. It is hoped that this study can help us master the health status of livestock that cannot be observed by the naked eye.

Similarity Analysis Between SAR Target Images Based on Siamese Network (Siamese 네트워크 기반 SAR 표적영상 간 유사도 분석)

  • Park, Ji-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.462-475
    • /
    • 2022
  • Different from the field of electro-optical(EO) image analysis, there has been less interest in similarity metrics between synthetic aperture radar(SAR) target images. A reliable and objective similarity analysis for SAR target images is expected to enable the verification of the SAR measurement process or provide the guidelines of target CAD modeling that can be used for simulating realistic SAR target images. For this purpose, this paper presents a similarity analysis method based on the siamese network that quantifies the subjective assessment through the distance learning of similar and dissimilar SAR target image pairs. The proposed method is applied to MSTAR SAR target images of slightly different depression angles and the resultant metrics are compared and analyzed with qualitative evaluation. Since the image similarity is somewhat related to recognition performance, the capacity of the proposed method for target recognition is further checked experimentally with the confusion matrix.

An Intelligent System for Filling of Missing Values in Weather Data

  • Maqsood Ali Solangi;Ghulam Ali Mallah;Shagufta Naz;Jamil Ahmed Chandio;Muhammad Bux Soomro
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.95-99
    • /
    • 2023
  • Recently Machine Learning has been considered as one of the active research areas of Computer Science. The various Artificial Intelligence techniques are used to solve the classification problems of environmental sciences, biological sciences, and medical sciences etc. Due to the heterogynous and malfunctioning weather sensors a considerable amount of noisy data with missing is generated, which is alarming situation for weather prediction stockholders. Filling of these missing values with proper method is really one of the significant problems. The data must be cleaned before applying prediction model to collect more precise & accurate results. In order to solve all above stated problems, this research proposes a novel weather forecasting system which consists upon two steps. The first step will prepare data by reducing the noise; whereas a decision model is constructed at second step using regression algorithm. The Confusion Matrix will be used to evaluation the proposed classifier.

Similarity Measurement Between Titles and Abstracts Using Bijection Mapping and Phi-Correlation Coefficient

  • John N. Mlyahilu;Jong-Nam Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.143-149
    • /
    • 2022
  • This excerpt delineates a quantitative measure of relationship between a research title and its respective abstract extracted from different journal articles documented through a Korean Citation Index (KCI) database published through various journals. In this paper, we propose a machine learning-based similarity metric that does not assume normality on dataset, realizes the imbalanced dataset problem, and zero-variance problem that affects most of the rule-based algorithms. The advantage of using this algorithm is that, it eliminates the limitations experienced by Pearson correlation coefficient (r) and additionally, it solves imbalanced dataset problem. A total of 107 journal articles collected from the database were used to develop a corpus with authors, year of publication, title, and an abstract per each. Based on the experimental results, the proposed algorithm achieved high correlation coefficient values compared to others which are cosine similarity, euclidean, and pearson correlation coefficients by scoring a maximum correlation of 1, whereas others had obtained non-a-number value to some experiments. With these results, we found that an effective title must have high correlation coefficient with the respective abstract.

Real-time Knowledge Structure Mapping from Twitter for Damage Information Retrieval during a Disaster

  • Sohn, Jiu;Kim, Yohan;Park, Somin;Kim, Hyoungkwan
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.505-509
    • /
    • 2020
  • Twitter is a useful medium to grasp various damage situations that have occurred in society. However, it is a laborious task to spot damage-related topics according to time in the environment where information is constantly produced. This paper proposes a methodology of constructing a knowledge structure by combining the BERT-based classifier and the community detection techniques to discover the topics underlain in the damage information. The methodology consists of two steps. In the first step, the tweets are classified into the classes that are related to human damage, infrastructure damage, and industrial activity damage by a BERT-based transfer learning approach. In the second step, networks of the words that appear in the damage-related tweets are constructed based on the co-occurrence matrix. The derived networks are partitioned by maximizing the modularity to reveal the hidden topics. Five keywords with high values of degree centrality are selected to interpret the topics. The proposed methodology is validated with the Hurricane Harvey test data.

  • PDF

Assessment of maximum liquefaction distance using soft computing approaches

  • Kishan Kumar;Pijush Samui;Shiva S. Choudhary
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.395-418
    • /
    • 2024
  • The epicentral region of earthquakes is typically where liquefaction-related damage takes place. To determine the maximum distance, such as maximum epicentral distance (Re), maximum fault distance (Rf), or maximum hypocentral distance (Rh), at which an earthquake can inflict damage, given its magnitude, this study, using a recently updated global liquefaction database, multiple ML models are built to predict the limiting distances (Re, Rf, or Rh) required for an earthquake of a given magnitude to cause damage. Four machine learning models LSTM (Long Short-Term Memory), BiLSTM (Bidirectional Long Short-Term Memory), CNN (Convolutional Neural Network), and XGB (Extreme Gradient Boosting) are developed using the Python programming language. All four proposed ML models performed better than empirical models for limiting distance assessment. Among these models, the XGB model outperformed all the models. In order to determine how well the suggested models can predict limiting distances, a number of statistical parameters have been studied. To compare the accuracy of the proposed models, rank analysis, error matrix, and Taylor diagram have been developed. The ML models proposed in this paper are more robust than other current models and may be used to assess the minimal energy of a liquefaction disaster caused by an earthquake or to estimate the maximum distance of a liquefied site provided an earthquake in rapid disaster mapping.

Study on Fault Diagnosis and Data Processing Techniques for Substrate Transfer Robots Using Vibration Sensor Data

  • MD Saiful Islam;Mi-Jin Kim;Kyo-Mun Ku;Hyo-Young Kim;Kihyun Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.45-53
    • /
    • 2024
  • The maintenance of semiconductor equipment is crucial for the continuous growth of the semiconductor market. System management is imperative given the anticipated increase in the capacity and complexity of industrial equipment. Ensuring optimal operation of manufacturing processes is essential to maintaining a steady supply of numerous parts. Particularly, monitoring the status of substrate transfer robots, which play a central role in these processes, is crucial. Diagnosing failures of their major components is vital for preventive maintenance. Fault diagnosis methods can be broadly categorized into physics-based and data-driven approaches. This study focuses on data-driven fault diagnosis methods due to the limitations of physics-based approaches. We propose a methodology for data acquisition and preprocessing for robot fault diagnosis. Data is gathered from vibration sensors, and the data preprocessing method is applied to the vibration signals. Subsequently, the dataset is trained using Gradient Tree-based XGBoost machine learning classification algorithms. The effectiveness of the proposed model is validated through performance evaluation metrics, including accuracy, F1 score, and confusion matrix. The XGBoost classifiers achieve an accuracy of approximately 92.76% and an equivalent F1 score. ROC curves indicate exceptional performance in class discrimination, with 100% discrimination for the normal class and 98% discrimination for abnormal classes.

Development of deep learning structure for complex microbial incubator applying deep learning prediction result information (딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.116-121
    • /
    • 2023
  • In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.