• Title/Summary/Keyword: matrix analysis

Search Result 5,836, Processing Time 0.037 seconds

Motion Analysis of Two Floating Platforms with Mooring and Hawser Lines in Tandem Moored Operation by Combined Matrix Method and Separated Matrix Method

  • KOO BON-JUN;KIM MOO-HYUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.1-15
    • /
    • 2005
  • The motion behaviors including hydrodynamic interaction and mechanical coupling effects on multiple-body floating platforms are simulated by using a time domain hull/mooring/riser coupled dynamics analysis program. The objective of this study is to evaluate off-diagonal hydrodynamic interaction effects and mechanical coupling effects on tandem moored FPSO and shuttle taker motions. In the multiple-body floating platforms interaction, hydrodynamic coupling effects with waves and mechanical coupling effects through the connectors should be considered. Thus, in this study, the multiple-body platform motions are calculated by Combined Matrix Method (CMM) as well as Separated Matrix Method (SMM). The advantage of the combined matrix method is that it can include all the 6Nx6N full hydrodynamic and mechanical interaction effects among N bodies. Whereas, due to the larger matrix size, the calculation time of Combined Matrix Method (CMM) is longer than the Separated Matrix Method (SMM). On the other hand, Separated Matrix Method (SMM) cannot include the off-diagonal 6x6 hydrodynamic interaction coefficients although it can fully include mechanical interactions among N bodies. To evaluate hydrodynamic interaction and mechanical coupling effects, tandem moored FPSO and shuttle tanker is simulated by Combined Matrix Method (CMM) and Separated Matrix Method (SMM). The calculation results give a good agreement between Combined Matrix Method (CMM) and Separated Matrix Method (SMM). The results show that the Separated Matrix Method (SMM) is more efficient for tandem moored FPSO and shuttle tanker. In the numerical calculation, the hydrodynamic coefficients are calculated from a 3D diffraction/radiation panel program WAMIT, and wind and current forces are generated by using the respective coefficients given in the OCIMF data sheet.

Eigenvalue Analysis of Power Systems with Non-Continuous Operating Elements by the RCF Method : Modeling of the State Transition Equations (불연속 동작특성을 갖는 전력계통의 RCF법을 사용한 고유치 해석 : 상태천이 방정식으로의 모델링)

  • Kim Deok Young
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.2
    • /
    • pp.67-72
    • /
    • 2005
  • In conventional small signal stability analysis, system is assumed to be invariant and the state space equations are used to calculate the eigenvalues of state matrix. However, when a system contains switching elements such as FACTS devices, it becomes non-continuous system. In this case, a mathematically rigorous approach to system small signal stability analysis is by means of eigenvalue analysis of the system periodic transition matrix based on discrete system analysis method. In this paper, RCF(Resistive Companion Form) method is used to analyse small signal stability of a non-continuous system including switching elements. Applying the RCF method to the differential and integral equations of power system, generator, controllers and FACTS devices including switching elements should be modeled in the form of state transition equations. From this state transition matrix eigenvalues which are mapped to unit circle can be calculated.

Design of a Composite Flywheel Rotor for Energy Storage System (에너지 저장시스템용 복합재 플라이휠 로터의 설계)

  • 정희문;최상규;하성규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1665-1674
    • /
    • 1995
  • An optimum design has been performed to maximize specific energy (SED) of composite flywheel rotor for energy storage system. The flywheel rotor is assumed to be an axisymmetric thick laminated shell with a plane strain state for structural analysis. For the structural analysis the centrifugal force is considered and the stiffness matrix equation was derived for each ring considering the interferences between the rings. The global stiffness matrix was derived by integrating the local stiffness matrix satisfying the conditions of force and displacement compatibilities. Displacements are then calculated from the global stiffness matrix and the stresses in each ring are also calculated. 3-D intra-laminar quadratic Tsai-Wu criterion is then used for the strength analysis. An optimum procedure is also developed to find the optimal interferences and lay up angle to maximize SED using the sensitivity analysis.

Analysis of a Structural Damage Detection Using Sensitivity Analysis (감도해석을 이용한 구조물의 손상위치 및 크기해석)

  • 이정윤
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.50-55
    • /
    • 2003
  • This study proposed the analysis of damage detection due to the change of the stiffness of structure by using the original and modified dynamic characteristics. The present approach allows the use of composite data which consist of eigenvalues and eigenvectors. The suggested method is applied to examples of a cantilever and 3 degree of freedom system by modifying the stiffness. The predicted damage detections are in good agreement with these from the structural reanalysis using the modified stiffness.

PERTURBATION ANAYSIS FOR THE MATRIX EQUATION X = I - A*X-1A + B*X-1B

  • Lee, Hosoo
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.123-131
    • /
    • 2014
  • The purpose of this paper is to study the perturbation analysis of the matrix equation $X=I-A^*X^{-1}A+B^*X^{-1}B$. Based on the matrix differentiation, we give a precise perturbation bound for the positive definite solution. A numerical example is presented to illustrate the shrpness of the perturbation bound.

Vibration Analysis of Three-Dimensional Piping System by Transfer Matrix Method (전달행렬법을 이용한 3차원 파이프 계의 진동해석)

  • 이동명
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.110-116
    • /
    • 1998
  • For the vibration analysis of 3-dimensional piping system containing fluid flow, a transfer matrix method is presented. The fluid velocity and pressure were considered, that coupled to longitudinal and flexural vibrations. Transfer matrices and point matrices were derived from direct solutions of the differential equations of motion of pipe conveying fluids, and the variations of natural frequency with flow velocity for 3-dimensional piping system were investigated.

  • PDF

A Study of Cyclic Scheduling Analysis in FMS Based on the Transitive Matrix (추이적 행렬을 이용한 유연생산시스템의 순환 스케쥴링 분석)

  • 이종근
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.4
    • /
    • pp.57-68
    • /
    • 2002
  • The analysis of the cyclic scheduling problem in FMS using the transitive matrix has been proposed. Since the transitive matrix may explain all the relations between the places and transitions, we propose an algorithm to get good solution after slicing off some subnets from the original net based on machines operations. For analyzing the schedule problem, we considered two time functions such as produce time and waiting time using the P-invariant. In addition, we are shown the effectiveness of proposed algorithm after comparing with unfolding algorithms.

  • PDF

Comparative analysis on the distinctive functions and usability of bibliographic data analysis softwares (서지데이터 분석 툴에 대한 특성 및 편의성 비교분석)

  • Lee, bang-rae;Lee, June;Yeo, Woon-dong;Lee, Chang-Hoan;Moon, Young-Ho;Kwon, Oh-jin
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.501-505
    • /
    • 2007
  • Recently KISTI has developed the KnowlegeMatrix which is a stand-alone type bibliographic data analysis software. In this paper, we try to benchmark test on the performance level of KnowledgeMatrix with well-known S/Ws such as VantagePoint and BibTechMon. We compare distinctive functions and usability of each S/Ws on comparative categories including Data, Matrix, Analysis, Visualization and Preprocessing. Test results show that all S/Ws have differentiated specific feature, but there is some performance gaps. KnowledgeMatrix overally shows better performance than others.

  • PDF

Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(I) (횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(I))

  • Kang Ji-Woong;Kim Sang-Tae;Kwon Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.25-30
    • /
    • 2004
  • Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interface was treated as thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

Numerical modelling of the pull-out response of inclined hooked steel fibres

  • Georgiadi-Stefanidi, Kyriaki;Panagouli, Olympia;Kapatsina, Alexandra
    • Advances in concrete construction
    • /
    • v.3 no.2
    • /
    • pp.127-143
    • /
    • 2015
  • Steel fibre reinforced concrete (SFRC) is an anisotropic material due to the random orientation of the fibres within the cement matrix. Fibres under different inclination angles provide different strength contribution of a given crack width. For that the pull-out response of inclined fibres is of great importance to understand SFRC behaviour, particularly in the case of fibres with hooked ends, which are the most widely used. The paper focuses on the numerical modelling of the pull-out response of this kind of fibres from high-strength cementitious matrix in order to study the effects of different inclination angles of the fibres to the load-displacement pull-out curves. The pull-out of the fibres is studied by means of accurate three-dimensional finite element models, which take into account the nonlinearities that are present in the physical model, such as the nonlinear bonding between the fibre and the matrix in the early stages of the loading, the unilateral contact between the fibre and the matrix, the friction at the contact areas, the plastification of the steel fibre and the plastification and cracking of the cementitious matrix. The bonding properties of the fibre-matrix interface considered in the numerical model are based on experimental results of pull-out tests on straight fibres.