• 제목/요약/키워드: matrix addressing

검색결과 36건 처리시간 0.026초

Active-Matrix Cathodes though Integration of Amorphous Silicon Thin-Film Transistor with triode -and Diode-Type field Emitters

  • Song, Yoon-Ho;Cho, Young-Rae;Hwang, Chi-Sun;Kim, Bong-Chul;Ahn, Seong-Deok;Chung, Choong-Heui;Kim, Do-Hyung;Uhm, Hyun-Seok;Lee, Jin-Ho;Cho, Kyoung-Ik
    • Journal of Information Display
    • /
    • 제2권3호
    • /
    • pp.72-77
    • /
    • 2001
  • Amorphous silicon thin-film transistors (a-Si TFTs) were incorporated into Mo-tip-based triode-type field emitters and diode-type ones of carbon nanotubes for an active-matrix cathode (AMC) plate of field emission displays. Also, we developed a novel surface-treatment process for the Mo-tip fabrication, which gleatly enhanced in the stability of field emission. The field emission currents of AMC plates on glass substrate were well controlled by the gate bias of a-Si TFTs. Active-matrix field emission displays (AMFEDs) with these AMC plates were demonstrated in a vacuum chamber, showing low-voltage matrix addressing, good stability and reliability of field emission, and highly uniform light emissions from the anode plate with phosphors. The optimum design of AMFEDs including a-Si TFTs and a new light shield/focusing grid is discussed.

  • PDF

Modal analysis of cracked cantilever composite beams

  • Kisa, Murat;Arif Gurel, M.
    • Structural Engineering and Mechanics
    • /
    • 제20권2호
    • /
    • pp.143-160
    • /
    • 2005
  • Modal analysis of cracked cantilever composite beams, made of graphite-fibre reinforced polyamide, is studied. By using the finite element and component mode synthesis methods, a numeric model applicable to investigate the vibration of cracked composite beams is developed. In this new approach, from the crack section, the composite beam separated into two parts coupled by a flexibility matrix taking into account the interaction forces. These forces are derived from the fracture mechanics theory as the inverse of the compliance matrix calculated with the proper stress intensity factors and strain energy release rate expressions. Numerical results are obtained for modal analysis of composite beams with a transverse non-propagating open crack, addressing the effects of the location and depth of the crack, and the volume fraction and orientation of the fibre on the natural frequencies and mode shapes. By means of modal data, the position and dimension of the defect can be found. The results of the study confirmed that presented method is suitable for the vibration analysis of cracked cantilever composite beams. Present technique can be easily extended to composite plates and shells.

매트릭스형 전극 구동용 스태틱 플립플롭 회로의 설계기법에관한 연구 (The Study on the Design of Static Flip-Flop Circuits for the Driving of Matrix Type Electrodes)

  • 최선정;정기현;김종득
    • 전자공학회논문지A
    • /
    • 제30A권7호
    • /
    • pp.75-81
    • /
    • 1993
  • In this paper, New type of Static Edge Triggered D Flip-Flop Circuits which are effective for the sequencial selecting and addressing of Matrix type Electrodes being applied to Flat Display Devices is proposed by the Design Technique using the Transmission Characteristics of Feedback Transistors and Charge Back Up Function. These Circuits composed of 2-4 less transistors in number than Conventional Static D Flip Flop's have some advantages that the Maximum Transition Time of Clock Signals allowed is increased by 100-450 times more than that of the Conventional circuit at 100KHz Clock Frequence and Circuit Safety is much increased by making the wider ranges, 1-4V, of Clock Levelas a Non-operating periods than 3-3.2V ranges in case of the Conventional Circuit at 10MHz clock frequence. By these advantages, These circuits can be very effectively used in case that clock signal has long transition time, especially on the low frequency operation.

  • PDF

최적화 기법에 의한 비선형 시스템에서의 강인한 적응 관측기 설계 (Robust Adaptive Observer Design for a Class of Nonlinear Systems via an Optimization Method)

  • 정종철;허건수
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1249-1254
    • /
    • 2006
  • Existing adaptive observers may cause the parameter drifts due to disturbances even if state estimation errors remain small. To avoid the drift phenomena in the presence of bounded disturbances, several robust adaptive observers have been introduced addressing bounds in state and parameter estimates. However, it is not easy for these observers to manipulate the size of the bounds with the selection of the observer gain. In order to reduce estimation errors, this paper introduces the (equation omitted) gain minimization problem in the adaptive observer structure, which minimizes the (equation omitted) gain between disturbances and estimation errors. The stability condition of the adaptive observer is reformulated as a linear matrix inequality, and the observer gain is optimally chosen by solving the convex optimization problem. The estimation performance is demonstrated through a numerical example.

Microplasma Current Switch for OLED applications

  • Cai, Jie-Yu;Kim, Myung-Min;Moon, Cheol-Hee;Lee, Sang-Youn;Yi, Seung-Jun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.854-857
    • /
    • 2009
  • The concept of a microplasma current switch for a device operated in a current mode like organic light-emitting diodes, which features matrix addressability and current switching, is presented as well as its architecture and operational principle. To verify the concept, we have fabricated a 100 mm ${\times}$ 100 mm microplasma current switch panel with a cell pitch of $1080{\mu}m{\times}1080{\mu}m$. Moreover, the current-voltage measurements of the unit cell are performed for three different driving voltage amplitudes. They show the characteristic of an asymmetric floating double probe diagnosing plasmas.

  • PDF

Optimal sensor placement for bridge damage detection using deflection influence line

  • Liu, Chengyin;Teng, Jun;Peng, Zhen
    • Smart Structures and Systems
    • /
    • 제25권2호
    • /
    • pp.169-181
    • /
    • 2020
  • Sensor placement is a crucial aspect of bridge health monitoring (BHM) dedicated to accurately estimate and locate structural damages. In addressing this goal, a sensor placement framework based on the deflection influence line (DIL) analysis is here proposed, for the optimal design of damage detection-oriented BHM system. In order to improve damage detection accuracy, we explore the change of global stiffness matrix, damage coefficient matrix and DIL vector caused by structural damage, and thus develop a novel sensor placement framework based on the Fisher information matrix. Our approach seeks to determine the contribution of each sensing node to damage detection, and adopts a distance correction coefficient to eliminate the information redundancy among sensors. The proposed damage detection-oriented optimal sensor placement (OSP) method is verified by two examples: (1) a numerically simulated three-span continuous beam, and (2) the Pinghu bridge which has existing real damage conditions. These two examples verify the performance of the distance corrected damage sensitivity of influence line (DSIL) method in significantly higher contribution to damage detection and lower information redundancy, and demonstrate the proposed OSP framework can be potentially employed in BHM practices.

골수흡인물 농축액 및 기질유래연골형성 수술 이후 관찰된 거골의 골연골병변의 골유합: 증례 보고 (Bony Union of Osteochondral Lesion of the Talus after Bone Marrow Aspirate Concentrate and Matrix-Induced Chondrogenesis: A Case Report)

  • 송태훈;서진수;최준영
    • 대한족부족관절학회지
    • /
    • 제27권4호
    • /
    • pp.148-153
    • /
    • 2023
  • Traditionally, arthroscopic microfracture and autologous osteochondral autograft transplantation have been the primary surgical treatments for osteochondral lesions of the talus. On the other hand, recent advancements have introduced alternative approaches, such as autologous chondrocyte transplantation, matrix-derived autologous chondrocyte transplantation, intra-articular injection of concentrated bone marrow aspirate concentrate, and the use of fibrin glue to address chondral defects. Furthermore, some studies have explored a combination of bone marrow aspirate and matrix-derived chondrogenesis. In light of these developments, this report presents a case study of a young male patient in his early twenties with a relatively large osteochondral lesion exceeding 1.5 cm2 on the medial talar dome. Instead of removing the osteochondral lesion, a surgical approach was employed to retain the lesion while addressing the unstable cartilage in the affected area. This approach involved a combination of bone marrow aspirate concentrate and matrix-derived chondrogenesis. The treatment yielded favorable clinical outcomes and ultimately successfully induced the bony union of osteochondral lesions. This paper reports the author's experience with this innovative approach with a review of the relevant literature.

Active-Matrix Field Emission Display with Amorphous Silicon Thin-Film Transistors and Mo-Tip Field Emitter Arrays

  • Song, Yoon-Ho;Hwang, Chi-Sun;Cho, Young-Rae;Kim, Bong-Chul;Ahn, Seong-Deok;Chung, Choong-Heui;Kim, Do-Hyung;Uhm, Hyun-Seok;Lee, Jin-Ho;Cho, Kyoung-Ik
    • ETRI Journal
    • /
    • 제24권4호
    • /
    • pp.290-298
    • /
    • 2002
  • We present, for the first time, a prototype active-matrix field emission display (AMFED) in which an amorphous silicon thin-film transistor (a-Si TFT) and a molybdenum-tip field emitter array (Mo-tip FEA) were monolithically integrated on a glass substrate for a novel active-matrix cathode (AMC) plate. The fabricated AMFED showed good display images with a low-voltage scan and data signals irrespective of a high voltage for field emissions. We introduced a light shield layer of metal into our AMC to reduce the photo leakage and back channel currents of the a-Si TFT. We designed the light shield to act as a focusing grid to focus emitted electron beams from the AMC onto the corresponding anode pixel. The thin film depositions in the a-Si TFTs were performed at a high temperature of above 360°C to guarantee the vacuum packaging of the AMC and anode plates. We also developed a novel wet etching process for $n^+-doped$ a-Si etching with high etch selectivity to intrinsic a-Si and used it in the fabrication of an inverted stagger TFT with a very thin active layer. The developed a-Si TFTs performed well enough to be used as control devices for AMCs. The gate bias of the a-Si TFTs well controlled the field emission currents of the AMC plates. The AMFED with these AMC plates showed low-voltage matrix addressing, good stability and reliability of field emission, and good light emissions from the anode plate with phosphors.

  • PDF

전자비드를 이용한 패시브 매트릭스 디스플레이 제작 및 평가에 관한 연구 (A Study of Fabrication and Estimation Passive Matrix Display Using Electronic Bead)

  • 오유미;박선우
    • 한국전기전자재료학회논문지
    • /
    • 제25권3호
    • /
    • pp.224-228
    • /
    • 2012
  • We have developed new materials that lead to methyl meth acrylate monomer and styrene monomer to using polymerization method. The materials have a powder form and show liquid behavior. We call the "Electronic Bead". An our experiment, a positive-charged particle has $TiO_2$, polymer and CCA(-), while a negative-charged particle consists of carbon black, polymer and CCA(+). The charged particles have electrical characteristic of white -10 uC/g and black 10 uC/g, respectively. Also, these particles have good fluidity by additive of nano-sized silica. Using these materials, we demonstrated prototype displays that have $320{\times}320$ array of pixels and 6-in-diagonal viewable image size, driven by passive-matrix addressing. The reflectivity shows about 30% even though our experiment is at the beginning point. Also, the panel has contrast ratio 6:1. We think there are many chances to improve reflectivity through modifying components of particle resin, mixture ratio of each particle, panel structure and so on.

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

  • Li, Shunlong;Wang, Xin;Liu, Hongzhan;Zhuo, Yi;Su, Wei;Di, Hao
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.591-603
    • /
    • 2020
  • Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.