• 제목/요약/키워드: mathematics understanding

검색결과 1,223건 처리시간 0.021초

Design and Implementation of IoT based Low cost, Effective Learning Mechanism for Empowering STEM Education in India

  • Simmi Chawla;Parul Tomar;Sapna Gambhir
    • International Journal of Computer Science & Network Security
    • /
    • 제24권4호
    • /
    • pp.163-169
    • /
    • 2024
  • India is a developing nation and has come with comprehensive way in modernizing its reducing poverty, economy and rising living standards for an outsized fragment of its residents. The STEM (Science, Technology, Engineering, and Mathematics) education plays an important role in it. STEM is an educational curriculum that emphasis on the subjects of "science, technology, engineering, and mathematics". In traditional education scenario, these subjects are taught independently, but according to the educational philosophy of STEM that teaches these subjects together in project-based lessons. STEM helps the students in his holistic development. Youth unemployment is the biggest concern due to lack of adequate skills. There is a huge skill gap behind jobless engineers and the question arises how we can prepare engineers for a better tomorrow? Now a day's Industry 4.0 is a new fourth industrial revolution which is an intelligent networking of machines and processes for industry through ICT. It is based upon the usage of cyber-physical systems and Internet of Things (IoT). Industrial revolution does not influence only production but also educational system as well. IoT in academics is a new revolution to the Internet technology, which introduced "Smartness" in the entire IT infrastructure. To improve socio-economic status of the India students must equipped with 21st century digital skills and Universities, colleges must provide individual learning kits to their students which can help them in enhancing their productivity and learning outcomes. The major goal of this paper is to present a low cost, effective learning mechanism for STEM implementation using Raspberry Pi 3+ model (Single board computer) and Node Red open source visual programming tool which is developed by IBM for wiring hardware devices together. These tools are broadly used to provide hands on experience on IoT fundamentals during teaching and learning. This paper elaborates the appropriateness and the practicality of these concepts via an example by implementing a user interface (UI) and Dashboard in Node-RED where dashboard palette is used for demonstration with switch, slider, gauge and Raspberry pi palette is used to connect with GPIO pins present on Raspberry pi board. An LED light is connected with a GPIO pin as an output pin. In this experiment, it is shown that the Node-Red dashboard is accessing on Raspberry pi and via Smartphone as well. In the final step results are shown in an elaborate manner. Conversely, inadequate Programming skills in students are the biggest challenge because without good programming skills there would be no pioneers in engineering, robotics and other areas. Coding plays an important role to increase the level of knowledge on a wide scale and to encourage the interest of students in coding. Today Python language which is Open source and most demanding languages in the industry in order to know data science and algorithms, understanding computer science would not be possible without science, technology, engineering and math. In this paper a small experiment is also done with an LED light via writing source code in python. These tiny experiments are really helpful to encourage the students and give play way to learn these advance technologies. The cost estimation is presented in tabular form for per learning kit provided to the students for Hands on experiments. Some Popular In addition, some Open source tools for experimenting with IoT Technology are described. Students can enrich their knowledge by doing lots of experiments with these freely available software's and this low cost hardware in labs or learning kits provided to them.

제 1, 2회 학생 과학 공동탐구 토론대회의 종합적 평가 (Summative Evaluation of 1993, 1994 Discussion Contest of Scientific Investigation)

  • 김은숙;윤혜경
    • 한국과학교육학회지
    • /
    • 제16권4호
    • /
    • pp.376-388
    • /
    • 1996
  • The first and the second "Discussion Contest of Scientific Investigation" was evaluated in this study. This contest was a part of 'Korean Youth Science Festival' held in 1993 and 1994. The evaluation was based on the data collected from the middle school students of final teams, their teachers, a large number of middle school students and college students who were audience of the final competition. Questionnaires, interviews, reports of final teams, and video tape of final competition were used to collect data. The study focussed on three research questions. The first was about the preparation and the research process of students of final teams. The second was about the format and the proceeding of the Contest. The third was whether participating the Contest was useful experience for the students and the teachers of the final teams. The first area, the preparation and the research process of students, were investigated in three aspects. One was the level of cooperation, participation, support and the role of teachers. The second was the information search and experiment, and the third was the report writing. The students of the final teams from both years, had positive opinion about the cooperation, students' active involvement, and support from family and school. Students considered their teachers to be a guide or a counsellor, showing their level of active participation. On the other hand, the interview of 1993 participants showed that there were times that teachers took strong leading role. Therefore one can conclude that students took active roles most of the time while the room for improvement still exists. To search the information they need during the period of the preparation, student visited various places such as libraries, bookstores, universities, and research institutes. Their search was not limited to reading the books, although the books were primary source of information. Students also learned how to organize the information they found and considered leaning of organizing skill useful and fun. Variety of experiments was an important part of preparation and students had positive opinion about it. Understanding related theory was considered most difficult and important, while designing and building proper equipments was considered difficult but not important. This reflects the students' school experience where the equipments were all set in advance and students were asked to confirm the theories presented in the previous class hours. About the reports recording the research process, students recognize the importance and the necessity of the report but had difficulty in writing it. Their reports showed tendency to list everything they did without clear connection to the problem to be solved. Most of the reports did not record the references and some of them confused report writing with story telling. Therefore most of them need training in writing the reports. It is also desirable to describe the process of student learning when theory or mathematics that are beyond the level of middle school curriculum were used because it is part of their investigation. The second area of evaluation was about the format and the proceeding of the Contest, the problems given to students, and the process of student discussion. The format of the Contests, which consisted of four parts, presentation, refutation, debate and review, received good evaluation from students because it made students think more and gave more difficult time but was meaningful and helped to remember longer time according to students. On the other hand, students said the time given to each part of the contest was too short. The problems given to students were short and open ended to stimulate students' imagination and to offer various possible routes to the solution. This type of problem was very unfamiliar and gave a lot of difficulty to students. Student had positive opinion about the research process they experienced but did not recognize the fact that such a process was possible because of the oneness of the task. The level of the problems was rated as too difficult by teachers and college students but as appropriate by the middle school students in audience and participating students. This suggests that it is possible for student to convert the problems to be challengeable and intellectually satisfactory appropriate for their level of understanding even when the problems were difficult for middle school students. During the process of student discussion, a few problems were observed. Some problems were related to the technics of the discussion, such as inappropriate behavior for the role he/she was taking, mismatching answers to the questions. Some problems were related to thinking. For example, students thinking was off balanced toward deductive reasoning, and reasoning based on experimental data was weak. The last area of evaluation was the effect of the Contest. It was measured through the change of the attitude toward science and science classes, and willingness to attend the next Contest. According to the result of the questionnaire, no meaningful change in attitude was observed. However, through the interview several students were observed to have significant positive change in attitude while no student with negative change was observed. Most of the students participated in Contest said they would participate again or recommend their friend to participate. Most of the teachers agreed that the Contest should continue and they would recommend their colleagues or students to participate. As described above, the "Discussion Contest of Scientific Investigation", which was developed and tried as a new science contest, had positive response from participating students and teachers, and the audience. Two among the list of results especially demonstrated that the goal of the Contest, "active and cooperative science learning experience", was reached. One is the fact that students recognized the experience of cooperation, discussion, information search, variety of experiments to be fun and valuable. The other is the fact that the students recognized the format of the contest consisting of presentation, refutation, discussion and review, required more thinking and was challenging, but was more meaningful. Despite a few problems such as, unfamiliarity with the technics of discussion, weakness in inductive and/or experiment based reasoning, and difficulty in report writing, The Contest demonstrated the possibility of new science learning environment and science contest by offering the chance to challenge open tasks by utilizing student science knowledge and ability to inquire and to discuss rationally and critically with other students.

  • PDF

간호학 교과과정 개선을 위한 조사 연구 (A Study on improvement of curriculum in Nursing)

  • 김애실
    • 대한간호학회지
    • /
    • 제4권2호
    • /
    • pp.1-16
    • /
    • 1974
  • This Study involved the development of a survey form and the collection of data in an effort-to provide information which can be used in the improvement of nursing curricula. The data examined were the kinds courses currently being taught in the curricula of nursing education institutions throughout Korea, credits required for course completion, and year in-which courses are taken. For the purposes of this study, curricula were classified into college, nursing school and vocational school categories. Courses were directed into the 3 major categories of general education courses, supporting science courses and professional education course, and further subdirector as. follows: 1) General education (following the classification of Philip H. phoenix): a) Symbolics, b) Empirics, c) Aesthetics. 4) Synthetics, e) Ethics, f) Synoptic. 2) Supporting science: a) physical science, b) biological science, c) social science, d) behavioral science, e) Health science, f) Educations 3) Professional Education; a) basic courses, b) courses in each of the respective fields of nursing. Ⅰ. General Education aimed at developing the individual as a person and as a member of society is relatively strong in college curricula compared with the other two. a) Courses included in the category of symbolics included Korean language, English, German. Chines. Mathematics. Statics: Economics and Computer most college curricula included 20 credits. of courses in this sub-category, while nursing schools required 12 credits and vocational school 10 units. English ordinarily receives particularly heavy emphasis. b) Research methodology, Domestic affair and women & courtney was included under the category of empirics in the college curricula, nursing and vocational school do not offer this at all. c) Courses classified under aesthetics were physical education, drill, music, recreation and fine arts. Most college curricula had 4 credits in these areas, nursing school provided for 2 credits, and most vocational schools offered 10 units. d) Synoptic included leadership, interpersonal relationship, and communications, Most schools did not offer courses of this nature. e) The category of ethics included citizenship. 2 credits are provided in college curricula, while vocational schools require 4 units. Nursing schools do not offer these courses. f) Courses included under synoptic were Korean history, cultural history, philosophy, Logics, and religion. Most college curricular 5 credits in these areas, nursing schools 4 credits. and vocational schools 2 units. g) Only physical education was given every Year in college curricula and only English was given in nursing schools and vocational schools in every of the curriculum. Most of the other courses were given during the first year of the curriculum. Ⅱ. Supporting science courses are fundamental to the practice and application of nursing theory. a) Physical science course include physics, chemistry and natural science. most colleges and nursing schools provided for 2 credits of physical science courses in their curricula, while most vocational schools did not offer t me. b) Courses included under biological science were anatomy, physiologic, biology and biochemistry. Most college curricula provided for 15 credits of biological science, nursing schools for the most part provided for 11 credits, and most vocational schools provided for 8 units. c) Courses included under social science were sociology and anthropology. Most colleges provided for 1 credit in courses of this category, which most nursing schools provided for 2 creates Most vocational school did not provide courses of this type. d) Courses included under behavioral science were general and clinical psychology, developmental psychology. mental hygiene and guidance. Most schools did not provide for these courses. e) Courses included under health science included pharmacy and pharmacology, microbiology, pathology, nutrition and dietetics, parasitology, and Chinese medicine. Most college curricula provided for 11 credits, while most nursing schools provide for 12 credits, most part provided 20 units of medical courses. f) Courses included under education included educational psychology, principles of education, philosophy of education, history of education, social education, educational evaluation, educational curricula, class management, guidance techniques and school & community. Host college softer 3 credits in courses in this category, while nursing schools provide 8 credits and vocational schools provide for 6 units, 50% of the colleges prepare these students to qualify as regular teachers of the second level, while 91% of the nursing schools and 60% of the vocational schools prepare their of the vocational schools prepare their students to qualify as school nurse. g) The majority of colleges start supporting science courses in the first year and complete them by the second year. Nursing schools and vocational schools usually complete them in the first year. Ⅲ. Professional Education courses are designed to develop professional nursing knowledge, attitudes and skills in the students. a) Basic courses include social nursing, nursing ethics, history of nursing professional control, nursing administration, social medicine, social welfare, introductory nursing, advanced nursing, medical regulations, efficient nursing, nursing english and basic nursing, College curricula devoted 13 credits to these subjects, nursing schools 14 credits, and vocational schools 26 units indicating a severe difference in the scope of education provided. b) There was noticeable tendency for the colleges to take a unified approach to the branches of nursing. 60% of the schools had courses in public health nursing, 80% in pediatric nursing, 60% in obstetric nursing, 90% in psychiatric nursing and 80% in medical-surgical nursing. The greatest number of schools provided 48 crudites in all of these fields combined. in most of the nursing schools, 52 credits were provided for courses divided according to disease. in the vocational schools, unified courses are provided in public health nursing, child nursing, maternal nursing, psychiatric nursing and adult nursing. In addition, one unit is provided for one hour a week of practice. The total number of units provided in the greatest number of vocational schools is thus Ⅲ units double the number provided in nursing schools and colleges. c) In th leges, the second year is devoted mainly to basic nursing courses, while the third and fourth years are used for advanced nursing courses. In nursing schools and vocational schools, the first year deals primarily with basic nursing and the second and third years are used to cover advanced nursing courses. The study yielded the following conclusions. 1. Instructional goals should be established for each courses in line with the idea of nursing, and curriculum improvements should be made accordingly. 2. Course that fall under the synthetics category should be strengthened and ways should be sought to develop the ability to cooperate with those who work for human welfare and health. 3. The ability to solve problems on the basis of scientific principles and knowledge and understanding of man society should be fostered through a strengthening of courses dealing with physical sciences, social sciences and behavioral sciences and redistribution of courses emphasizing biological and health sciences. 4. There should be more balanced curricula with less emphasis on courses in the major There is a need to establish courses necessary for the individual nurse by doing away with courses centered around specific diseases and combining them in unified courses. In addition it is possible to develop skill in dealing with people by using the social setting in comprehensive training. The most efficient ratio of the study experience should be studied to provide more effective, interesting education Elective course should be initiated to insure a man flexible, responsive educational program. 5. The curriculum stipulated in the education law should be examined.

  • PDF