• Title/Summary/Keyword: mathematics curriculum research

Search Result 625, Processing Time 0.026 seconds

A study on the Development of Physics Education Program for Foreign Students of Natural Science and Engineering College in Korea (이공계 대학의 유학생을 위한 물리교육 프로그램 개발 연구)

  • Kim, Soocheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.9
    • /
    • pp.1-16
    • /
    • 2019
  • This study was carried out to develop a physics education program for foreign students of university in Korea to improve their ability to major in the field and to prevent them from becoming dropout. The subjects of the study are five Chinese students attending a natural science and engineering college. Prior to the development of the physics education program, the researchers developed basic physics textbooks for the foreign students and questionaries for diagnosis and summative evaluation, and utilized them to apply a total of seven classes. After the application of the classes, the results of the student's diagnosis and summative evaluation, the teacher's diaries, the observer's diaries, and the transcripts were analyzed by triangulation method. In addition, Nvivo12 was used for the analysis of the teacher's and observer's diaries to help with qualitative analysis. The results of the study are as follows: First, the oder and contents of physics education program for students of the natural science and engineering college were presented in detail, and basic physics textbooks and tools for diagnosis and summative assessment were developed. Second, as a result of the analysis of the diagnosis and summative assessment results of the program, the students' basic physics achievement improved by an average of 40 points due to the application of the developed program. Third, as a result of the application of the program using Nvivo12, meaningful node and actual cases were extracted. There were 10 types of nodes created such as understanding of the students, teaching method, rate of the participation, level differences, language problems, relevance to majors, curriculum and methods of education in the country of origin, cooperative learning, and interest inducement. The researcher provided suggestions on physics education methods for students of science and engineering colleges in Korea based on the related cases.

The Characteristics of the Elementary Gifted Children and the Direction of Korean Gifted Education Perceived by the Preservice Elementary Teachers (봉사학습을 경험한 예비교사의 초등영재아동의 특성과 영재교육 방향에 대한 인식)

  • Kim, Rah Kyung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.12
    • /
    • pp.177-185
    • /
    • 2017
  • In order to succeed in gifted education, it is necessary to educate teachers with professional skills and qualities that meet the psychological characteristics of gifted students and satisfy their educational desires. The purpose of this study is to explore the characteristics of the science/mathematics gifted students the preservice teachers who participated in the service learning in the hothousing center annexed to the university, and the direction in which the Korean hothousing should proceed. For this, the service learning was conducted in the hothousing institution targeting three students attending A education college for 12 weeks. As a result of study, the gifted children showed the outstanding cognitive, affective, and creative natures which were expressed positively or negatively according to the situation. The study participants recognized the teachers had a duty to admit the distinctive nature of the individual gifted children and to provide the specially contrived education for them for the qualitative improvement of the Korean hothousing. Simultaneously they thought the gifted children should be regarded as ordinary children before the gifted persons and treated as the children. The necessity for preservice teachers to take the hothousing lectures requisitely and provide the learning chance focusing on the practical contents beyond the hothousing teacher training was brought forward in order to develop the systematic hothousing curriculum.

A Study on the Characteristics of Academic Achievement in Problem Solving and Inquiry Tasks of Korean Fourth Graders in TIMSS 2019 (TIMSS 2019 문제해결 및 탐구 과제에 대한 우리나라 초등학교 4학년 학생들의 학업성취 특성 분석)

  • Jeom-Rae Kwon
    • Journal of Science Education
    • /
    • v.48 no.1
    • /
    • pp.31-46
    • /
    • 2024
  • This study analyzes the academic achievement characteristics of Korean fourth graders on the problem solving and inquiry tasks (PSIs) introduced in TIMSS 2019. TIMSS 2019 conducted a computer-based assessment in addition to the traditional paper-based assessment. The PSIs were included only in the computer-based assessment, so 30 countries participated in the PSIs of the computer-based assessment. PSIs consist of integrating multiple content and cognitive domains, including 10 or fewer items. Most of the items are constructed in an open-ended format rather than multiple-choice. The analysis results showed that there were differences in student achievement across countries depending on the inclusion of PSIs. Korea's average achievement score decreased by 1 point. The analysis of individual items showed that students' achievement was somewhat low, and the correct answer rate for male students was generally higher than that for female students in many items. Furthermore, item-by-item analysis revealed that there were items where countries such as England and Finland had higher correct answer rates than traditional high-achieving countries, i.e. Singapore, Taiwan, and Korea. Considering the recent emphasis on integrated education, it seems necessary to review the use of PSIs in assessments in Korea as well.

Summative Evaluation of 1993, 1994 Discussion Contest of Scientific Investigation (제 1, 2회 학생 과학 공동탐구 토론대회의 종합적 평가)

  • Kim, Eun-Sook;Yoon, Hye-Gyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.16 no.4
    • /
    • pp.376-388
    • /
    • 1996
  • The first and the second "Discussion Contest of Scientific Investigation" was evaluated in this study. This contest was a part of 'Korean Youth Science Festival' held in 1993 and 1994. The evaluation was based on the data collected from the middle school students of final teams, their teachers, a large number of middle school students and college students who were audience of the final competition. Questionnaires, interviews, reports of final teams, and video tape of final competition were used to collect data. The study focussed on three research questions. The first was about the preparation and the research process of students of final teams. The second was about the format and the proceeding of the Contest. The third was whether participating the Contest was useful experience for the students and the teachers of the final teams. The first area, the preparation and the research process of students, were investigated in three aspects. One was the level of cooperation, participation, support and the role of teachers. The second was the information search and experiment, and the third was the report writing. The students of the final teams from both years, had positive opinion about the cooperation, students' active involvement, and support from family and school. Students considered their teachers to be a guide or a counsellor, showing their level of active participation. On the other hand, the interview of 1993 participants showed that there were times that teachers took strong leading role. Therefore one can conclude that students took active roles most of the time while the room for improvement still exists. To search the information they need during the period of the preparation, student visited various places such as libraries, bookstores, universities, and research institutes. Their search was not limited to reading the books, although the books were primary source of information. Students also learned how to organize the information they found and considered leaning of organizing skill useful and fun. Variety of experiments was an important part of preparation and students had positive opinion about it. Understanding related theory was considered most difficult and important, while designing and building proper equipments was considered difficult but not important. This reflects the students' school experience where the equipments were all set in advance and students were asked to confirm the theories presented in the previous class hours. About the reports recording the research process, students recognize the importance and the necessity of the report but had difficulty in writing it. Their reports showed tendency to list everything they did without clear connection to the problem to be solved. Most of the reports did not record the references and some of them confused report writing with story telling. Therefore most of them need training in writing the reports. It is also desirable to describe the process of student learning when theory or mathematics that are beyond the level of middle school curriculum were used because it is part of their investigation. The second area of evaluation was about the format and the proceeding of the Contest, the problems given to students, and the process of student discussion. The format of the Contests, which consisted of four parts, presentation, refutation, debate and review, received good evaluation from students because it made students think more and gave more difficult time but was meaningful and helped to remember longer time according to students. On the other hand, students said the time given to each part of the contest was too short. The problems given to students were short and open ended to stimulate students' imagination and to offer various possible routes to the solution. This type of problem was very unfamiliar and gave a lot of difficulty to students. Student had positive opinion about the research process they experienced but did not recognize the fact that such a process was possible because of the oneness of the task. The level of the problems was rated as too difficult by teachers and college students but as appropriate by the middle school students in audience and participating students. This suggests that it is possible for student to convert the problems to be challengeable and intellectually satisfactory appropriate for their level of understanding even when the problems were difficult for middle school students. During the process of student discussion, a few problems were observed. Some problems were related to the technics of the discussion, such as inappropriate behavior for the role he/she was taking, mismatching answers to the questions. Some problems were related to thinking. For example, students thinking was off balanced toward deductive reasoning, and reasoning based on experimental data was weak. The last area of evaluation was the effect of the Contest. It was measured through the change of the attitude toward science and science classes, and willingness to attend the next Contest. According to the result of the questionnaire, no meaningful change in attitude was observed. However, through the interview several students were observed to have significant positive change in attitude while no student with negative change was observed. Most of the students participated in Contest said they would participate again or recommend their friend to participate. Most of the teachers agreed that the Contest should continue and they would recommend their colleagues or students to participate. As described above, the "Discussion Contest of Scientific Investigation", which was developed and tried as a new science contest, had positive response from participating students and teachers, and the audience. Two among the list of results especially demonstrated that the goal of the Contest, "active and cooperative science learning experience", was reached. One is the fact that students recognized the experience of cooperation, discussion, information search, variety of experiments to be fun and valuable. The other is the fact that the students recognized the format of the contest consisting of presentation, refutation, discussion and review, required more thinking and was challenging, but was more meaningful. Despite a few problems such as, unfamiliarity with the technics of discussion, weakness in inductive and/or experiment based reasoning, and difficulty in report writing, The Contest demonstrated the possibility of new science learning environment and science contest by offering the chance to challenge open tasks by utilizing student science knowledge and ability to inquire and to discuss rationally and critically with other students.

  • PDF

Comparative Study between Mathematically Gifted Elementary Students and Common Students in Self-Efficacy and Career Attitude Maturity (초등수학영재와 일반학생의 자기효능감과 진로태도성숙과의 관계 비교)

  • Lee, Jung Hwa;Ryu, Sung Rim
    • Communications of Mathematical Education
    • /
    • v.27 no.1
    • /
    • pp.63-80
    • /
    • 2013
  • Reflecting the recent trends and needs of gifted education, this study set out to compare and analyze mathematically gifted elementary students and common students in self-efficacy and career attitude maturity, understand the characteristics of the former, and provide assistance for career education for both the groups. The subjects include 237 mathematically gifted elementary students and 221 common students in D Metropolitan City. The research findings were as follows: First, mathematically gifted elementary students turned out to have higher self-efficacy than common students at the significance level of .01 in the three self-efficacy subfactors, namely confidence, self-regulated efficacy, and task difficulty preference. The findings indicate that mathematically gifted elementary students have much confidence in themselves and strong faith in themselves, thus forming a habit of preferring a relatively high-level task by taking self-management and task difficulty into proper consideration. Second, mathematically gifted elementary students showed higher overall career attitude maturity than common students. There was significant difference at the significance level of .01 in decisiveness and preparedness between the two groups and significant difference at the significance level of .05 in assertiveness. However, there was no statistically significant difference in purposefulness and independence between the two groups. Finally, there were positive correlations at the significance level of .01 between all the subfactors of self-efficacy and those of career attitude maturity in all the subjects except for self-regulated efficacy and purposefulness, between which there were positive correlations at the significance level of .05. The mathematically gifted elementary students showed positive correlations between more subfactors of self-efficacy and career attitude maturity than common students. Given those findings, it is necessary to take differences in self-efficacy and career attitude maturity between mathematically gifted elementary students and common students into account when organizing and running a curriculum. The findings confirm the importance of providing students with various experiences fit for them and point to a need for helping mathematically gifted elementary students maintain a high level of self-efficacy and guiding them through career education with more appropriate career attitude maturity improvement programs.