• 제목/요약/키워드: mathematical structures

검색결과 935건 처리시간 0.025초

Moment-rotation relationship of hollow-section beam-to-column steel joints with extended end-plates

  • Wang, Jia;Zhu, Haiming;Uy, Brian;Patel, Vipulkumar;Aslani, Farhad;Li, Dongxu
    • Steel and Composite Structures
    • /
    • 제29권6호
    • /
    • pp.717-734
    • /
    • 2018
  • This paper presents the flexural performance of steel beam-to-column joints composed of hollow structural section beams and columns. A finite element (FE) model was developed incorporating geometrical and material nonlinearities to evaluate the behaviour of joints subjected to bending moments. The numerical outcomes were validated with experimental results and compared with EN1993-1-8. The demountability of the structure was discussed based on the tested specimen. A parametric analysis was carried out to investigate the effects of steel yield strength, end-plate thickness, beam thickness, column wall thickness, bolt diameter, number of bolts and location. Consequently, an analytical model was derived based on the component method to predict the moment-rotation relationships for the sub-assemblies with extended end-plates. The accuracy of the proposed model was calibrated by the experimental and numerical results. It is found that the FE model is fairly reliable to predict the initial stiffness and moment capacity of the joints, while EN1993-1-8 overestimates the initial stiffness extensively. The beam-to-column joints are shown to be demountable and reusable with a moment up to 53% of the ultimate moment capacity. The end-plate thickness and column wall thickness have a significant influence on the joint behaviour, and the layout of double bolt-rows in tension is recommended for joints with extended end-plates. The derived analytical model is capable of predicting the moment-rotation relationship of the structure.

Effect of flexural and shear stresses simultaneously for optimized design of butterfly-shaped dampers: Computational study

  • Farzampour, Alireza;Eatherton, Matthew R.;Mansouri, Iman;Hu, Jong Wan
    • Smart Structures and Systems
    • /
    • 제23권4호
    • /
    • pp.329-335
    • /
    • 2019
  • Structural fuses are made up from oriented steel plates to be used to resist seismic force with shear loading resistance capabilities. The damage and excessive inelastic deformations are concentrated in structural fuses to avoid any issues for the rest of the surrounding elements. Recently developed fuse plates are designed with engineered cutouts leaving flexural or shear links with controlled yielding features. A promising type of link is proposed to align better bending strength along the length of the link with the demand moment diagram is a butterfly-shaped link. Previously, the design methodologies are purely based on the flexural stresses, or shear stresses only, which overestimate the dampers capability for resisting against the applied loadings. This study is specifically focused on the optimized design methodologies for commonly used butterfly-shaped dampers. Numerous studies have shown that the stresses are not uniformly distributed along the length of the dampers; hence, the design methodology and the effective implementation of the steel need revisions and improvements. In this study, the effect of shear and flexural stresses on the behavior of butterfly-shaped links are computationally investigated. The mathematical models based on von-Mises yielding criteria are initially developed and the optimized design methodology is proposed based on the yielding criterion. The optimized design is refined and investigated with the aid of computational investigations in the next step. The proposed design methodology meets the needs of optimized design concepts for butterfly-shaped dampers considering the uniform stress distribution and efficient use of steel.

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.

은닉 마르코프 모델을 이용한 국가별 주가지수 예측 (A hidden Markov model for predicting global stock market index)

  • 강하진;황범석
    • 응용통계연구
    • /
    • 제34권3호
    • /
    • pp.461-475
    • /
    • 2021
  • 은닉 마르코프 모델(hidden Markov model, HMM)은 은닉된 상태와 관찰 가능한 결과의 두 가지 요소로 이루어진 통계적 모형으로 확률론적 접근이 가능하고, 다양한 수학적인 구조를 가지고 있어 여러 분야에서 활발하게 사용되고 있다. 특히 금융 분야의 시계열 데이터에 응용되어 다양한 연구가 진행되고 있다. 본 연구는 HMM 이론을 국내 KOSPI200 주가지수와 더불어 NIKKEI225, HSI, S&P500, FTSE100과 같은 해외 주가지수 예측에 적용해 보고자 한다. 또한, 최근 인공지능 분야의 발전으로 인해 주식 가격 예측에 빈번하게 사용되는 서포트 벡터 회귀(support vector regression, SVR) 결과와 어떤 차이가 있는지 비교하여 살펴보고자 한다.

Icevaning control of an Arctic offshore vessel and its experimental validation

  • Kim, Young-Shik;Kim, Jinwhan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.208-222
    • /
    • 2021
  • Managing with the presence of sea ice is the primary challenge in the operation of floating platforms in the Arctic region. It is widely accepted that offshore structures operating in Arctic conditions need station-keeping methods as well as ice management by icebreakers. Dynamic Positioning (DP) is one of the station-keeping methods that can provide mobility and flexibility in marine operations. The presence of sea ice generates complex external forces and moments acting on the vessel, which need to be counteracted by the DP system. In this paper, an icevaning control algorithm is proposed that enables Arctic offshore vessels to perform DP operations. The proposed icevaning control enables each vessel to be oriented toward the direction of the mean environmental force induced by ice drifting so as to improve the operational safety and reduce the overall thruster power consumption by having minimum external disturbances naturally. A mathematical model of an Arctic offshore vessel is summarized for the development of the new icevaning control algorithm. To determine the icevaning action of the Arctic offshore vessel without any measurements and estimation of ice conditions including ice drift, task and null space are defined in the vessel model, and the control law is formulated in the task space. A backstepping technique is utilized to handle the nonlinearity of the Arctic offshore vessel's dynamic model, and the Lyapunov stability theory is applied to guarantee the stability of the proposed icevaning control algorithm. Experiments are conducted in the ice tank of the Korea Research Institute of Ships and Ocean Engineering to demonstrate the feasibility of the proposed approach.

스마트폰 내장 가속도계와 카메라를 이용한 케이블 장력 추정에 관한 연구 (A Study on Cable Tension Estimation Using Smartphone Built-in Accelerometer and Camera)

  • 이형진
    • 한국산업융합학회 논문집
    • /
    • 제25권5호
    • /
    • pp.773-782
    • /
    • 2022
  • Estimation of cable tension through proper measurements is one of the essential tasks in evaluating the safety of cable structures. In this paper, a study on cable tension estimation using the built-in accelerometer and camera in a smartphone was conducted. For the experimental study, visual displacement measurement using a smartphone camera and acceleration measurement using a built-in accelerometer were performed in the cable-stayed bridge model. The estimated natural frequencies and transformed tensions from these measurements were compared with the theoretical values and results from the normal visual displacement method. Through comparison, it can be seen that the error between the method using the smartphone and the normal visual displacement is sufficiently small to be acceptable. It has also been shown that those errors are much smaller than the difference between the values calculated by the theoretical model. These results show that the deviation according to the type of measurement method is not large and it is rather important to use an appropriate mathematical model. In conclusion, in the case of cable tension estimation, it can be said that the visual displacement measurement and acceleration using a smartphone can be a sufficiently applicable method, just like the normal visual displacement method. It is also noteworthy that the smartphone accelerometer has a larger magnitude error and has more limitations such as high-frequency sampling instability compared to the visual displacement method, but shows almost the same performance as the visual displacement method in this cable tension estimation.

Digitalization and Diversification of Modern Educational Space (Ukrainian case)

  • Oksana, Bohomaz;Inna, Koreneva;Valentyn, Lihus;Yanina, Kambalova;Shevchuk, Victoria;Hanna, Tolchieva
    • International Journal of Computer Science & Network Security
    • /
    • 제22권11호
    • /
    • pp.11-18
    • /
    • 2022
  • Linking Ukraine's education system with the trends of global digitalization is mandatory to ensure the sustainable, long-term development of the country, as well as to increase the sustainability of the education system and the economy as a whole during the crisis period. Now the main problems of the education system in Ukraine are manifested in a complex context caused by Russian armed aggression. In the context of war, problems include differences in adaptation to online learning among educational institutions, limited access to education for vulnerable groups in the zone of active hostilities, the lack of digital educational resources suitable for online learning, and the lack of basic digital skills and competencies among students and teachers necessary to properly conduct online classes. Some of the problems of online learning were solved in the pandemic, but in the context of war Ukrainian society needs a new vision of education and continuous efforts of all social structures in the public and private environment. In the context of war, concerted action is needed to keep education on track and restore it in active zones, adapting to the needs of a dynamic society and an increasingly digitized economy. Among the urgent needs of the education system are a change in the teaching-learning paradigm, which is based on content presentation, memorization, and reproduction, and the adoption of a new, hybrid educational model that will encourage the development of necessary skills and abilities for students and learners in a digitized society and enable citizens close to war zones to learn.

수학 문장제의 명사화 여부에 따른 초등학교 3학년의 해결 과정 분석 (Analysis of the 3rd Graders' Solving Processes of the Word Problems by Nominalization)

  • 강윤지;장혜원
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제26권2호
    • /
    • pp.83-97
    • /
    • 2023
  • 명사화는 문법적 은유 중 하나로, 수식으로 변환해야 하는 대상의 수학화를 용이하게 한다는 장점과 함께 복잡하고 압축된 문장 구성으로 인해 문장 이해를 어렵게 할 가능성이 있다는 단점이 있다. 이러한 명사화가 실제 학생들의 문장제 해결 과정에 어떠한 영향을 미치는지 파악하기 위하여 초등학교 3학년을 대상으로 명사화 여부에 따른 사칙연산 문장제 8개를 제공하여 검사를 실시하였다. 분석 결과, 문장제의 명사화 여부는 문제 이해 및 수식화 가능 여부에 의미 있는 영향을 미치지 못하였다. 그러나, 검사에 참여한 학생에게 명사화에 대한 사전 경험이 없음에도 불구하고 문제 이해 단계에서 명사화 또는 탈명사화가 나타나는 것을 확인하였으며, 명사화의 유형 변화가 발생하는 경우 성공 비율이 높게 나타나는 등 수식화 단계를 용이하게 하였다. 이를 통하여 명사화가 문장제의 문제 이해 및 수식화 단계에서 교수학적 전략으로 활용될 수 있으며 문장제의 학습에서 더 깊이 있는 이해를 유도할 수 있을 것으로 기대할 수 있다. 

A refined quasi-3D theory for stability and dynamic investigation of cross-ply laminated composite plates on Winkler-Pasternak foundation

  • Nasrine Belbachir;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohamed A. Al-Osta;Mofareh Hassan Ghazwani;Ali Alnujaie;Abdeldjebbar Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제85권4호
    • /
    • pp.433-443
    • /
    • 2023
  • The current paper discusses the dynamic and stability responses of cross-ply composite laminated plates by employing a refined quasi-3D trigonometric shear deformation theory. The proposed theory takes into consideration shear deformation and thickness stretching by a trigonometric variation of in-plane and transverse displacements through the plate thickness and assures the vanished shear stresses conditions on the upper and lower surfaces of the plate. The strong point of the new formulation is that the displacements field contains only 4 unknowns, which is less than the other shear deformation theories. In addition, the present model considers the thickness extension effects (εz≠0). The presence of the Winkler-Pasternak elastic base is included in the mathematical formulation. The Hamilton's principle is utilized in order to derive the four differentials' equations of motion, which are solved via Navier's technique of simply supported structures. The accuracy of the present 3-D theory is demonstrated by comparing fundamental frequencies and critical buckling loads numerical results with those provided using other models available in the open literature.

A novel prismatic-shaped isolation platform with tunable negative stiffness and enhanced quasi-zero stiffness effect

  • Jing Bian;Xuhong Zhou;Ke Ke;Michael C.H. Yam;Yuhang Wang;Zi Gu;Miaojun Sun
    • Smart Structures and Systems
    • /
    • 제31권3호
    • /
    • pp.213-227
    • /
    • 2023
  • A passive prismatic-shaped isolation platform (PIP) is proposed to realize enhanced quasi-zero stiffness (QZS) effect. The design concept uses a horizontal spring to produce a tunable negative stiffness and installs oblique springs inside the cells of the prismatic structure to provide a tunable positive stiffness. Therefore, the QZS effect can be achieved by combining the negative stiffness and the positive stiffness. To this aim, firstly, the mathematical modeling and the static analysis are conducted to demonstrate this idea and provide the design basis. Further, with the parametric study and the optimal design of the PIP, the enhanced QZS effect is achieved with widened QZS range and stable property. Moreover, the dynamic analysis is conducted to investigate the vibration isolation performance of the proposed PIP. The analysis results show that the widened QZS property can be achieved with the optimal designed structural parameters, and the proposed PIP has an excellent vibration isolation performance in the ultra-low frequency due to the enlarged QZS range. Compared with the traditional QZS isolator, the PIP shows better performance with a broader isolation frequency range and stable property under the large excitation amplitude.