• Title/Summary/Keyword: mathematical learning improvement

Search Result 137, Processing Time 0.025 seconds

An Analytic Study of Beliefs about Mathematics and Mathematics Education of High School Students' (고등학교 학생들의 수학 본질과 수학 학습에 대한 신념 연구)

  • Nam, Yun-Jung;Song, Yeong-Moo
    • School Mathematics
    • /
    • v.10 no.4
    • /
    • pp.649-669
    • /
    • 2008
  • The study focuses on what to consider and do for the improvement of math education of Korea by comparing two general high school students' and two specialized high school students' beliefs about mathematics and mathematics learning. The major topics compared in the beliefs are composed of perception of mathematics as a science, learning methods of mathematics. The results of the study show that two general high school students tend to set more low value on mathematics, especially in the value of implement, civilization, utility of mathematics than that of two specialized high school students.

  • PDF

An Inquiry-Oriented Approach to Differential Equations: Contributions to Teaching University Mathematics through Teaching Experiment Methodology (탐구 지향 미분방정식의 개발 실제: 교수실험을 통한 접근)

  • Kwon, Oh-Nam
    • Communications of Mathematical Education
    • /
    • v.19 no.4 s.24
    • /
    • pp.733-767
    • /
    • 2005
  • During the past decades, there has been a fundamental change in the objectives and nature of mathematics education, as well as a shift in research paradigms. The changes in mathematics education emphasize learning mathematics from realistic situations, students' invention or construction solution procedures, and interaction with other students of the teacher. This shifted perspective has many similarities with the theoretical . perspective of Realistic Mathematics Education (RME) developed by Freudental. The RME theory focused the guide reinvention through mathematizing and takes into account students' informal solution strategies and interpretation through experientially real context problems. The heart of this reinvention process involves mathematizing activities in problem situations that are experientially real to students. It is important to note that reinvention in a collective, as well as individual activity, in which whole-class discussions centering on conjecture, explanation, and justification play a crucial role. The overall purpose of this study is to examine the developmental research efforts to adpat the instructional design perspective of RME to the teaching and learning of differential equation is collegiate mathematics education. Informed by the instructional design theory of RME and capitalizes on the potential technology to incorporate qualitative and numerical approaches, this study offers as approach for conceptualizing the learning and teaching of differential equation that is different from the traditional approach. Data were collected through participatory observation in a differential equations course at a university through a fall semester in 2003. All class sessions were video recorded and transcribed for later detailed analysis. Interviews were conducted systematically to probe the students' conceptual understanding and problem solving of differential equations. All the interviews were video recorded. In addition, students' works such as exams, journals and worksheets were collected for supplement the analysis of data from class observation and interview. Informed by the instructional design theory of RME, theoretical perspectives on emerging analyses of student thinking, this paper outlines an approach for conceptualizing inquiry-oriented differential equations that is different from traditional approaches and current reform efforts. One way of the wars in which thus approach complements current reform-oriented approaches 10 differential equations centers on a particular principled approach to mathematization. The findings of this research will provide insights into the role of the mathematics teacher, instructional materials, and technology, which will provide mathematics educators and instructional designers with new ways of thinking about their educational practice and new ways to foster students' mathematical justifications and ultimately improvement of educational practice in mathematics classes.

  • PDF

Analysis of the Error-Remedial Effect and Change of the Students' Misconception on the Learning of Linear Function (교수학적 처방에 따른 중학생들의 일차함수 오개념의 변화와 그 효과 분석)

  • 이종희;김부미
    • School Mathematics
    • /
    • v.5 no.1
    • /
    • pp.115-133
    • /
    • 2003
  • Investigation of the students' mathematical misconceptions is very important for improvement in the school mathematics teach]ng and basis of curriculum. In this study, we categorize second-grade middle school students' misconceptions on the learning of linear function and make a comparative study of the error-remedial effect of students' collaborative learning vs explanatory leaching. We also investigate how to change and advance students' self-diagnosis and treatment of the milton ceptions through the collaborative learning about linear function. The result of the study shows that there are three main kinds of students' misconceptions in algebraic setting like this: (1) linear function misconception in relation with number concept, (2) misconception of the variables, (3) tenacity of specific perspective. Types of misconception in graphical setting are classified into misconception of graph Interpretation and prediction and that of variables as the objects of function. Two different remedies have a distinctive effect on treatment of the students' misconception under the each category. We also find that a misconception can develop into a correct conception as a result of interaction with other students.

  • PDF

A study on the performance improvement of the quality prediction neural network of injection molded products reflecting the process conditions and quality characteristics of molded products by process step based on multi-tasking learning structure (다중 작업 학습 구조 기반 공정단계별 공정조건 및 성형품의 품질 특성을 반영한 사출성형품 품질 예측 신경망의 성능 개선에 대한 연구)

  • Hyo-Eun Lee;Jun-Han Lee;Jong-Sun Kim;Gu-Young Cho
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.72-78
    • /
    • 2023
  • Injection molding is a process widely used in various industries because of its high production speed and ease of mass production during the plastic manufacturing process, and the product is molded by injecting molten plastic into the mold at high speed and pressure. Since process conditions such as resin and mold temperature mutually affect the process and the quality of the molded product, it is difficult to accurately predict quality through mathematical or statistical methods. Recently, studies to predict the quality of injection molded products by applying artificial neural networks, which are known to be very useful for analyzing nonlinear types of problems, are actively underway. In this study, structural optimization of neural networks was conducted by applying multi-task learning techniques according to the characteristics of the input and output parameters of the artificial neural network. A structure reflecting the characteristics of each process step was applied to the input parameters, and a structure reflecting the quality characteristics of the injection molded part was applied to the output parameters using multi-tasking learning. Building an artificial neural network to predict the three qualities (mass, diameter, height) of injection-molded product under six process conditions (melt temperature, mold temperature, injection speed, packing pressure, pacing time, cooling time) and comparing its performance with the existing neural network, we observed enhancements in prediction accuracy for mass, diameter, and height by approximately 69.38%, 24.87%, and 39.87%, respectively.

The Effects of Tasks Setting for Mathematical Modelling in the Complex Real Situation (실세계 상황에서 수학적 모델링 과제설정 효과)

  • Shin, Hyun-Sung;Lee, Myeong-Hwa
    • Journal of the Korean School Mathematics Society
    • /
    • v.14 no.4
    • /
    • pp.423-442
    • /
    • 2011
  • The purpose of this study was to examine the effects of tasks setting for mathematical modelling in the complex real situations. The tasks setting(MMa, MeA) in mathematical modelling was so important that we can't ignore its effects to develop meaning and integrate mathematical ideas. The experimental setting were two groups ($N_1=103$, $N_2=103$) at public high school and non-experimental setting was one group($N_3=103$). In mathematical achievement, we found meaningful improvement for MeA group on modelling tasks, but no meaningful effect on information processing tasks. The statistical method used was ACONOVA analysis. Beside their achievement, we were much concerned about their modelling approach that TSG21 had suggested in Category "Educational & cognitive Midelling". Subjects who involved in experimental works showed very interesting approach as Exploration, analysis in some situation ${\Rightarrow}$ Math. questions ${\Rightarrow}$ Setting models ${\Rightarrow}$ Problem solution ${\Rightarrow}$ Extension, generalization, but MeA group spent a lot of time on step: Exploration, analysis and MMa group on step, Setting models. Both groups integrated actively many heuristics that schoenfeld defined. Specially, Drawing and Modified Simple Strategy were the most powerful on approach step 1,2,3. It was very encouraging that those experimental setting was improved positively more than the non-experimental setting on mathematical belief and interest. In our school system, teaching math. modelling could be a answer about what kind of educational action or environment we should provide for them. That is, mathematical learning.

  • PDF

A Vehicle Routing Problem with Double-Trip and Multiple Depots by using Modified Genetic Algorithm (수정 유전자 알고리듬을 이용한 중복방문, 다중차고 차량경로문제)

  • Jeon, Geon-Wook;Shim, Jae-Young
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.28-36
    • /
    • 2004
  • The main purpose of this study is to find out the optimal solution of the vehicle routing problem considering heterogeneous vehicle(s), double-trips, and multi depots. This study suggests a mathematical programming model with new numerical formula which considers the amount of delivery and sub-tour elimination and gives optimal solution by using OPL-STUDIO(ILOG). This study also suggests modified genetic algorithm which considers the improvement of the creation method for initial solution, application of demanding point, individual and last learning method in order to find excellent solution, survival probability of infeasible solution for allowance, and floating mutation rate for escaping from local solution. The suggested modified genetic algorithm is compared with optimal solution of the existing problems. We found the better solution rather than the existing genetic algorithm. The suggested modified genetic algorithm is tested by Eilon and Fisher data(Eilon 22, Eilon 23, Eilon 30, Eilon 33, and Fisher 10), respectively.

An Exploration of the Reform Direction of Teaching Statistics (통계교육의 개선방향 탐색)

  • 우정호
    • School Mathematics
    • /
    • v.2 no.1
    • /
    • pp.1-27
    • /
    • 2000
  • In the past half century little effort has been made for the improvement of teaching and learning statistics compared with other parts of school mathematics. But recently data analysis has begun to play a prominant role in the national reform efforts of mathematics curricula in the United States of America and the United Kingdom. In this paper we overview modern statistical thinking differed from mathematical thinking and examine the problems of current old-style teaching of statistics. And, we discuss the current data handling(or data analysis) emphasis in the national curriculum of mathematics in the countries mentioned above. We explore the reform direction of statistics teaching; changing the philosophy of teaching statistics, teaching real data analysis, emphasis of using computer, and teaching statistical inference not as mathematics but as intuitive data-centered approach.

  • PDF

The Effects of Learners' Job Competency Development on the Improvement of Their Vocational Key Competencies in Lifelong Education Based on National Competency Standards(NCS) (국가직무능력표준(NCS)기반 평생교육에서 학습자의 직무능력개발이 직업기초능력 향상에 미치는 영향)

  • Nam, Gi-Young;Yoon, Jun-Sang;Im, Gwi-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.130-141
    • /
    • 2017
  • This study examined the effects of learners' job competency development on their vocational key competency improvement in lifelong education based on national competency standards. A survey was empirically carried out to 480 learners of lifelong education institutions in Seoul and the results were statistically analyzed. Covariance analysis was conducted to allow for external influences of lifelong education learners' educational environment in the process that verifies the effects of job competency development on vocational key competencies classified into 4 units, namely, mathematical skill, problem-solving skill, resource management skill, and communication skill. The findings are summarized as follows. First, all factors of job competency development had no effect on mathematical competency in the single dimension. Second, the testing of hypothesis 2 showed that education system(F=3.021, p<.05) and curriculum(F=6.684, p<.05) of job competency development factors had a significant positive effect on mathematical competency in the single dimension. Third, the testing of hypothesis 3 showed that only curriculum(F=5.865, p<.05) of job competency development factors had a significant positive effect on resource management in the single dimension. Fourth, the testing of hypothesis 4 showed that all factors of job competency development had no effect on communication in the single dimension. These findings suggest that the proper harmony of both education system and curriculum or all education system, curriculum and evaluation management in the combination of lifelong education support with teaching interaction can have a positive effect on the improvement of communication.

Beyond adaptation: Transforming pedagogies of teaching elementary mathematics methods course in the online environment (온라인 환경에서 초등 수학 방법론 수업의 교수법 변화)

  • Kwon, Minsung;Yeo, Sheunghyun
    • The Mathematical Education
    • /
    • v.61 no.4
    • /
    • pp.521-537
    • /
    • 2022
  • The unprecedented COVID-19 pandemic has disrupted, interrupted, and changed the way we normally prepare our teacher candidates in teacher preparation programs. In this paper, we, two mathematics teacher educators (MTEs), reflect our own experiences in appropriating, transforming, reconstructing, and modifying our pedagogies of teacher education in making a transition from face-to-face to online environment during the COVID-19 pandemic. Using a collaborative self-study, we discussed issues, challenges, changes, opportunities, and innovations of teaching an elementary mathematics methods course in the online environment. Using a constant comparison method, we explored the following three themes: (1) using virtual manipulatives; (2) creating collaborative, interactive, and shared learning experiences for preservice teachers; and (3) making preservice teachers engaged in student thinking. These findings indicated that online teaching requires transformative knowledge for teacher educators. Transferring face-to-face to online is not a simple matter of putting the existing content to online; it should focus on pedagogical improvement in teaching mathematics rather than technology's sake or how it can be repurposed in a new online environment in a way that students' learning is optimized. The findings of this study provide implications for unpacking MTEs' technological pedagogical content knowledge (TPACK), creating collaborative learning experiences for preservice teachers, and designing a collaborative self-study between MTEs engaged in the community of professional learning.

A study on TPACK of mathematics teachers : Focusing on recognitions and educational needs of TPACK (수학교사의 테크놀로지 교수 내용 지식(TPACK)에 대한 연구 : TPACK에 대한 인식 및 교육요구도 분석 중심으로)

  • Lee, Da-Hee;Whang, Woo-Hyung
    • The Mathematical Education
    • /
    • v.57 no.1
    • /
    • pp.1-36
    • /
    • 2018
  • The purpose of this study is to examine the relationship between utilization of technology and TPACK in mathematics teachers, and to analyze needs and retentions, difference between needs and retentions, and educational needs of TPACK in mathematics teachers. Furthermore, we will prioritize TPACK items that mathematics teachers want to change, and provide implications for teacher education related to TPACK in the future. To do this, we analyzed 328 mathematics teachers nationwide by using survey on the utilization of technology, averages of TPACK's needs and retentions, t-test of two averages, Borich's educational needs analysis, and the Locus for Focus model. The results are as follows. Firstly, the actual utilization rate was lower than the positive recognition of utilization of technology by mathematics teachers, and many mathematics teachers mentioned the lack of knowledge related to TPACK. Secondly, the characteristics of in-service mathematics teacher's needs and retentions for TPACK were clear, and TPACK's starting line of in-service mathematics teacher can be different from pre-mathematics teacher's. The retentions was high in the order of CK, PCK and PK, and the needs was higher in the order of TPACK, TCK, TK and TPK. All of the higher retentions were knowledge related to PCK, and the value of CK was extremely high among them. In addition, mathematics teachers recognized needs for integrated knowledge related to technology, and they needed more TCK than TPK. The difference between needs and retentions showed that all items except two items in the PK were significant. Retentions of all items in CK was higher than needs, needs of all items in TK, TCK, TPK and TPACK was higher than retentions, PK and PCK were mixed. Thirdly, based on the analysis of Borich's educational needs and the Locus for Focus model, teacher education on TPACK for mathematics teachers needs to focus on TPACK, TK, TCK, and TPK. Specifically, TPACK needs to combine technology in terms of creativity-convergence, mathematical connections, communication, improvement of evaluation quality, and TK needs to new technology acquisition, function of utilizing technology, troubleshoot problems with technology, TCK needs to mathematical value(esthetic, practical) with technology, and TPK needs to consider technology in terms of evaluation methods, teaching and learning methods, improvement of pedagogy. Therefore, when determining the direction of teacher education related to TPACK in the future, if they try to reflect these items in detail, the teachers could participate more actively and receive practical help.