• Title/Summary/Keyword: mathematical

Search Result 31,224, Processing Time 0.055 seconds

Speed Control of Marine Gas Turbine Engine using Nonlinear PID Controller (비선형 PID 제어기를 이용한 선박용 가스터빈 엔진의 속도 제어)

  • Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.457-463
    • /
    • 2015
  • A gas turbine engine plays an important role as a prime mover that is used in the marine transportation field as well as the space/aviation and power plant fields. However, it has a complicated structure and there is a time delay element in the combustion process. Therefore, an elaborate mathematical model needs to be developed to control a gas turbine engine. In this study, a modeling technique for a gas generator, a PLA actuator, and a metering valve, which are major components of a gas turbine engine, is explained. In addition, sub-models are obtained at several operating points in a steady state based on the trial running data of a gas turbine engine, and a method for controlling the engine speed is proposed by designing an NPID controller for each sub-model. The proposed NPID controller uses three kinds of gains that are implemented with a nonlinear function. The parameters of the NPID controller are tuned using real-coded genetic algorithms in terms of minimizing the objective function. The validity of the proposed method is examined by applying to a gas turbine engine and by conducting a simulation.

A study on the improvement of work flow and productivity in complex manufacturing line by employing the effective process control methods (복잡한 생산라인에서 효율적 공정관리 기법 도입에 따른 공정흐름 및 생산성 개선 연구)

  • Park, Kyungmin;Jeong, Sukjae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.305-315
    • /
    • 2016
  • Due to the change from small volume production to small quantity batch production systems, individual companies have been attempting to produce a wide range of operating strategies, maximize their productivity, and minimize their WIP level by operating with the proper cycle time to defend their market share. In particular, using a complex workflow and process sequence in the manufacturing line has some drawbacks when it comes to designing the production strategy by applying analytical models, such as mathematical models and queueing theory. For this purpose, this paper uses three heuristic algorithms to solve the job release problem at the bottleneck workstation, product mix problem in multi-purpose machine(s), and batch size and sequence in batch machine(s). To verify the effectiveness of the proposed methods, a simulation analysis was performed. The experimental results demonstrated that the combined application of the proposed methods showed positive effects on the reduction of the cycle time and WIP level, and improvement of the throughput.

A Study on Tracking Control of Omni-Directional Mobile Robot Using Fuzzy Multi-Layered Controller (퍼지 다층 제어기를 이용한 전방향 이동로봇의 추적제어에 관한 연구)

  • Kim, Sang-Dae;Kim, Seung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1786-1795
    • /
    • 2011
  • The trajectory control for omni-directional mobile robot is not easy. Especially, the tracking control which system uncertainty problem is included is much more difficult. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy multi-layered algorithm. The fuzzy control method is able to solve the problems of classical adaptive controller and conventional fuzzy adaptive controllers. It explains the architecture of a fuzzy adaptive controller using the robust property of a fuzzy controller. The basic idea of new adaptive control scheme is that an adaptive controller can be constructed with parallel combination of robust controllers. This new adaptive controller uses a fuzzy multi-layered architecture which has several independent fuzzy controllers in parallel, each with different robust stability area. Out of several independent fuzzy controllers, the most suited one is selected by a system identifier which observes variations in the controlled system parameter. This paper proposes a design procedure which can be carried out mathematically and systematically from the model of a controlled system; related mathematical theorems and their proofs are also given. Finally, the good performance of the developed mobile robot is confirmed through live tests of path control task.

Modeling of Visual Attention Probability for Stereoscopic Videos and 3D Effect Estimation Based on Visual Attention (3차원 동영상의 시각 주의 확률 모델 도출 및 시각 주의 기반 입체감 추정)

  • Kim, Boeun;Song, Wonseok;Kim, Taejeong
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.609-620
    • /
    • 2015
  • Viewers of videos are likely to absorb more information from the part of the screen that attracts visual attention. This fact has led to the visual attention models that are being used in producing and evaluating videos. In this paper, we investigate the factors that are significant to visual attention and the mathematical form of the visual attention model. We then estimated the visual attention probability using the statistical design of experiments. The analysis of variance (ANOVA) verifies that the motion velocity, distance from the screen, and amount of defocus blur affect human visual attention significantly. Using the response surface modeling (RSM), we created a visual attention score model that concerns the three factors, from which we calculate the visual attention probabilities (VAPs) of image pixels. The VAPs are directly applied to existing gradient based 3D effect perception measurement. By giving weights according to our VAPs, our algorithm achieves more accurate measurement than the existing method. The performance of the proposed measurement is assessed by comparing them with subjective evaluation as well as with existing methods. The comparison verifies that the proposed measurement outperforms the existing ones.

Trend of Research and Industry-Related Analysis in Data Quality Using Time Series Network Analysis (시계열 네트워크분석을 통한 데이터품질 연구경향 및 산업연관 분석)

  • Jang, Kyoung-Ae;Lee, Kwang-Suk;Kim, Woo-Je
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.6
    • /
    • pp.295-306
    • /
    • 2016
  • The purpose of this paper is both to analyze research trends and to predict industrial flows using the meta-data from the previous studies on data quality. There have been many attempts to analyze the research trends in various fields till lately. However, analysis of previous studies on data quality has produced poor results because of its vast scope and data. Therefore, in this paper, we used a text mining, social network analysis for time series network analysis to analyze the vast scope and data of data quality collected from a Web of Science index database of papers published in the international data quality-field journals for 10 years. The analysis results are as follows: Decreases in Mathematical & Computational Biology, Chemistry, Health Care Sciences & Services, Biochemistry & Molecular Biology, Biochemistry & Molecular Biology, and Medical Information Science. Increases, on the contrary, in Environmental Sciences, Water Resources, Geology, and Instruments & Instrumentation. In addition, the social network analysis results show that the subjects which have the high centrality are analysis, algorithm, and network, and also, image, model, sensor, and optimization are increasing subjects in the data quality field. Furthermore, the industrial connection analysis result on data quality shows that there is high correlation between technique, industry, health, infrastructure, and customer service. And it predicted that the Environmental Sciences, Biotechnology, and Health Industry will be continuously developed. This paper will be useful for people, not only who are in the data quality industry field, but also the researchers who analyze research patterns and find out the industry connection on data quality.

Effects on Patient Exposure Dose and Image Quality by Increasing Focal Film Distance in Abdominal Radiography (복부 일반촬영시 초점-필름간거리 변화가 피폭선량 및 화질에 미치는 영향)

  • Kim, You-Hyun;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.21 no.1
    • /
    • pp.52-58
    • /
    • 1998
  • We can and must improve the diagnostic images using available knowledge and technology. At the same time we must strive to reduce the patient's integral and entrance radiation dose. Reducing the integral dose to the patient during the radiologic procedure is a primary concern of the patient, especially the pediatric patient, the radiologist and the technologist. A 100cm focal film distance generally is used for most over-table radiography. The early x-ray tubes and screen film combinations required long exposures, which often resulted in motion artifacts. But nowaday, we have the generators and x-ray tubes that can deliver the energy necessary in a very short time and the receptors that can record the information just as rapidly. And, we performed this studies to evaluate the patient exposure dose and the image quality by increasing focal film distance in diagnostic radiography. There are many factors which affected to exposure factor, but we studied to verify of FFD increase, only. Effect of increasing the focal film distance to a 140 cm distance was tested as follows; 1. The focal film distances were set at 100, 120, and 140cm. 2. A 18cm acryl(tissue equivalent) phantom was placed on the table top. 3. An Capintec 192 electrometer with PM 05 ion chamber was placed at the entrance surface of the phantom, and exposure were made at each focal film distances. 4. The procedure was repeated in the same manner as above except the ion chamber was placed beneath the phantom at the film plane. 5. Exit exposure were normalize to 8mR for each portions of the experiment. Based on the success of the empirical measurements, a detailed mathematical analysis of the dose reduction was performed using the percent depth dose data. The results of this study can be summerized as followings ; 1) Increasing FFD from 100 cm to 140 cm, we would create a situation that would have a significant effect on the overall quality of radiograph and achive the 17.42% reduction of entrance dose and the 18.95% reduction of integral dose that the patient receives. 2) Thickness of Al step wedge for equal film density increased with the long distance. 3) Increasing FFD, Magnification of image was lowered. 4) Resolution of image also increased with the FFD. As the results described above, we strongly recommend using the long FFD to provide better information for our patients and profession in abdomen radiographic studies.

  • PDF

Formulation Optimization of Salad Dressing Added with Bokbunja (Rubus coreanum Miquel) Juice (복분자(Rubus coreanum Miquel) 즙을 이용한 드레싱 제조의 재료 혼합 비율의 최적화)

  • Jung, Su-Ji;Kim, Na-Young;Jang, Myung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.4
    • /
    • pp.497-504
    • /
    • 2008
  • This study was conducted for the optimization of ingredients in salad dressing using Bokbunja (Rubus coreanum Miquel) juice. The experiment was designed according to the D-optimal design of mixture design, which included 14 experimental points with 4 replicates for three independent variables (Bokbunja juice $15.70\sim47.10%$, oil $23.50\sim39.20%$, vinegar $3.90\sim19.60%$). The compositional and functional properties of the prepared products were measured, and these values were applied to the mathematical models. A canonical form and trace plot showed the influence of each variable on the quality attribute of final mixture product. By the use of F-test, viscosity, color values (L, a, and b), emulsion stability and sensory characteristics (color) were expressed by a linear model, while the color values (L) and sensory characteristics (smell, taste, and overall acceptance) were by a quadratic model. The optimum formulations by numerical and graphical method were analogous: Bokbunja juice, oil and vinegar of 36.02%, 26.48%, and 12.00% by numerical method, respectively; those of 36.00%, 26.44%, and 12.06% by graphical method, respectively.

The Applicability of Minimum Entropy Deconvolution Considering Spatial Distribution of Sampling Points (지하수 함양량 추정시 공간상에서의 자료 Sampling 방법에 따른 Minimum Entropy Deconvolution의 적용성에 관한 검토)

  • Kim Tae-Hee;Kim Yong-Je;Lee Kang-Keun
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.52-58
    • /
    • 2006
  • Kim and Lee (2005) suggested Minimum Entropy Deconvolution (MED) to estimate the temporal sequence of the relative recharge. However this study by Kim and Lee (2005) was just related to the verification of the conceptual approach with MED. In this study, we try to characterize the applicability of MED in the case of spatially heterogeneous recharge (distance from recharge area). Simulated results were recorded with some specific sampling points. Estimated results from this study show higher than 0.8 in cross-correlation with the original recharge sequence. In addition, the physical and mathematical meanings of the applied filter length was also investigated. It was revealed that the length of filter is highly related to the spatial distance between recharge area and the monitoring site, and the apparent shape of hydraulic head change.

Unsteady Free Convection Flow in Horizontal Channels with Arbitrary Wall Temperatures (임의의 벽면온도에 따른 수평채널에서의 비정상 자연대류운동)

  • Im, Goeng
    • The Journal of Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.23-30
    • /
    • 1997
  • Energy transfer by free convection arises in many engineering applications, such as a hot steam radiator for heating a room, refrigeration coils, electric transformers, heating elements and electronic equipments. Generally unsteady natural convection flow in a horizontal channel with arbitrary wall temperatures and the mathematical and physical basis of convection transport has been considered in general. A physically meaningful exact solution of the problem has been obtained in a closed form by the application of the standard finite sine transform technique. Influences of the governing parameters, the Prandtl number and the Rayleigh number, to bring the flow and heat transfer to final steady states have been discussed separately. For constant values of the arbitray wall temperatures and of the function, determining the average axial velocity, the final steady state is approached in different times respectively for the cases when the Prandtl number Pr>1 and Pr<1. It is also seen that the function, representing the axial temperature gradient, is influenced by none of the governing parameters : but the steady state flow is influenced only by the Rayleigh number. There are, of course, many applications. Free convection strongly influences heat transfer from pipes and transmission lines, as well as from various electronic devices. It is also relevant to the environmental sciences, where it is responsible for oceanic and atmospheric motions, as well as related heat transfer processes.

  • PDF

Comparative analysis of caisson sections of composite breakwaters evaluated by Level I reliability-based design method (Level I 신뢰성 기반 설계법에 의해 산정된 혼성제 케이슨 단면의 비교 분석)

  • Lee, Cheol-Eung;Park, Dong Heon;Kim, Sang Ug
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.543-554
    • /
    • 2018
  • A methodology has been presented for evaluating the partial safety factors on the sliding failure mode of vertical caissons of composite breakwaters and for determining the cross sections of those by Level I reliability-based design method. Especially, a mathematical model has been suggested for the sake of a consistency of code format as well as convenience of application in practical design, for which the uncertainties associated with buoyancy and its own weight can be taken into account straightforwardly. Furthermore, design criteria equation has been derived by considering accurately the effect of uplift pressure, so that the cross sections of caissons can be assessed which must be safe against the sliding failure. It has been found that cross sections estimated from partial safety factors proposed in this paper are in very good agreement with the results of Level II AFDA and Level III MCS under the same target probability of failure. However, partial safety factors of the Technical Standards and Commentaries for Port and Harbour Facilities in Japan and Coastal Engineering Manual in USA tend to estimate much bigger or smaller cross sections in comparison to the present results. Finally, many reliability re-analyses have been performed in order to conform whether the stability level of cross section estimated by Level I reliability-based design method is satisfied with the target probability of failure of partial safety factors or not.