• Title/Summary/Keyword: materials transfer

Search Result 2,305, Processing Time 0.032 seconds

Characteristics simulation of wireless power transfer system considering shielding distance

  • Lee, Yu-Kyeong;Choi, Hyo-Sang;Jung, Byung Ik;Jeong, In-Sung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.40-43
    • /
    • 2015
  • Wireless power transfer technology is using the magnetic resonance recently drawing increased attention. It uses the resonance between transmitter and receiver coils to transfer power. Thus, it can improve the transfer distance and efficiency compared with the existing magnetic induction technique. The authors found from the previous study that the application of the superconductor coil to the magnetic resonance wireless power transfer system improved its efficiency. Its application to real life, however, requires the additional study on the effects of adjacent materials. In this study, the two resonance coils made by superconductor coils were used to aluminum and plastic shielding materials was placed between the coils. S-parameters were analyzed according to the position of the shielding material between the transmitter and receiver coils. As a result, the plastic of shielding material had no effect, but the aluminum of shielding material affected the wireless power transfer due to the shielding effectiveness.

Numerical Study for Heat Transfer Characteristics Varying Cross-Sectional Shape of a Tube (관 단면형상 변화에 따른 열전달 특성에 관한 수치해석적 연구)

  • Park, Hun-Chae;Choi, Hang-Seok;Kim, Seock-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.7
    • /
    • pp.560-566
    • /
    • 2012
  • Numerical study has been carried out to investigate heat transfer and pressure drop characteristics for streamlined shape tubes. The flow and thermal fields are investigated with varying diameter ratio of the tube ranging from 0.4 to 2.5 and Reynolds number ranging from 10,000 to 30,000. The results show that heat transfer per unit fan power is maximum at $D_2/D_1=0.8$. Furthermore, the heat transfer per unit fan power of streamlined shape tubes was compared with circular tube. The heat transfer per unit fan power of streamlined shape tube was larger than that of circular tube.

A Numerical Study on the Pressure Drop and Heat Transfer in the Hot Channel of Plate heat Exchanger with Chevron Shape (쉐브론 형상 판형 열교환기의 고온 채널에서의 압력손실 및 열전달 특성에 관한 해석 연구)

  • Sohn, Sangho;Shin, Jeong-Heon;Kim, Jungchul;Yoon, Seok Ho;Lee, Kong Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.4
    • /
    • pp.175-185
    • /
    • 2018
  • This research investigates the internal flow and heat transfer in a plate heat exchanger with chevron shape by utilizing the computational fluid dynamics (CFD) software. The basic unit of the plate heat exchanger is generally composed of a hot channel, an intermediate chevron plate, and a cold channel. Several studies have reported experimental and numerical simulation of heat transfer and pressure drop. This study focused on the detailed numerical simulation of flow and heat transfer in the complicated chevron shape channel. The long chevron plate was designed to include 16 chevron patterns. For proper mesh resolution, the number of cells was determined after the grid sensitivity test. The working fluid is water, and its properties are defined as a function of temperature. The Reynolds number ranges from 900 to 9,000 in the simulation. A realizable $k-{\varepsilon}$ model and non-equilibrium wall function are properly considered for the turbulent flow. The friction factors and heat transfer coefficient are validated by comparing them with existing empirical correlations, and other patterned flow phenomena are also investigated.

Enhanced Light Harvesting from F$\ddot{o}$rst-type resonance Energy Transfer in the Quasi-Solid State Dye-Sensitized Solar Cells (F$\ddot{o}$rst energy transfer 를 적용한 준고체 DSSC 의 효율향상)

  • Cheon, Jong Hun;Lee, Jeong Gwan;Yang, Hyeon Seok;Kim, Jae Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.117.1-117.1
    • /
    • 2011
  • We have demonstrated Forst-type resonance energy transfer (FRET) in the quasi-solid type dye-sensitized solar cells between organic fluorescence materials as an energy donor doped in polymeric gel electrolyte and ruthenium complex as an energy acceptor on surface of $TiO_2$. The strong spectral overlap of emission/absorption of energy donor and acceptor is required to get high FRET efficiency. The judicious choice of energy donor allows the enhancement of light harvesting characters of energy acceptor in quasi-solid dye sensitized solar cells which increase the power conversion efficiency. The enhanced light harvesting effect by the judicious choice/design of the fluorescence materials and sensitizing dyes permits the enhancement of photovoltaic performance of DSSC.

  • PDF

Dialysis in parallel-flow rectangular membrane modules with external reflux for improved performance

  • Yeh, Ho-Ming;Cheng, Tung-Wen;Chen, Kuan-Hung
    • Membrane and Water Treatment
    • /
    • v.1 no.2
    • /
    • pp.159-169
    • /
    • 2010
  • The effect of external recycle on the performance of dialysis in countercurrent-flow rectangular membrane modules was investigated both theoretically and experimentally. Theoretical analysis of mass transfer in parallel-flow device with and without recycle is analogous to heat transfer in parallel-flow heat exchangers. Experiments were carried out with the use of a microporous membrane to dialyze urea aqueous solution by pure water. In contrast to a device with recycle, improvement in mass transfer is achievable if parallel-flow dialysis is operated in a device of same size with recycle which provides the increase of fluid velocity, resulting in reduction of mass-transfer resistance, especially for rather low feed volume rate.

Radial flow advancement in multi-layered preform for resin transfer molding

  • Shin, K.S.;Song, Y.S.;Youn, J.R.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.217-224
    • /
    • 2006
  • Rapid flow advancement without void formation is essential in the liquid composite molding (LCM) such as resin transfer molding (RTM) and vacuum assisted resin transfer molding (VARTM). A highly permeable layer in multi-layered preform has an important role in improvement of the flow advancement. In this study, a multi-layered preform which consists of three layers is employed. Radial flow experiment is carried out for the multi-layered preform. A new analytic model for advancement of flow front is proposed and effective permeability is defined. The effective permeability for the multi-layered preform is obtained analytically and compared with experimental results. Compaction test is performed to determine the exact fiber volume traction of each layer in the multi-layered preform. Transverse permeability employed in modeling is measured experimentally unlike the previous studies. Accurate prediction of flow advancement is of great use for saving the processing time and enhancing product properties of the final part.

Study on Heat Transfer Characteristics of Screen Type Heat Storage Materials (집강형 축열재의 열전달 특성에 관한 연구)

  • Pak, Hi-Yong;Park, Woong-Ki
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.10 no.2
    • /
    • pp.81-89
    • /
    • 1981
  • Experimental results for convective heat transfer from a number of screen type heat storage materials, made of stainless steel and brass, were obtained by the use of the transient technique. The effects of the material, the size of mesh, and the number of screens. on the heat transfer coefficient could not be detectable A dimensionless correlation describing the convective heat transfer from the screen type heat storage materials is given in the range of Reynolds number between 60 and 1000.

  • PDF

Origin of Tearing Paths in Transferred Graphene by H2 Bubbling Process and Improved Transfer of Tear-Free Graphene Films U sing a Heat Press

  • Jinsung Kwak
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.522-527
    • /
    • 2022
  • Among efforts to improve techniques for the chemical vapor deposition of large-area and high-quality graphene films on transition metal substrates, being able to reliably transfer these atomistic membranes onto the desired substrate is a critical step for various practical uses, such as graphene-based electronic and photonic devices. However, the most used approach, the wet etching transfer process based on the complete etching of metal substrates, remains a great challenge. This is mainly due to the inevitable damage to the graphene, unintentional contamination of the graphene layer, and increased production cost and time. Here, we report the systematic study of an H2 bubbling-assisted transfer technique for graphene films grown on Cu foils, which is nondestructive not only to the graphene film but also to the Cu substrate. Also, we demonstrate the origin of the graphene film tearing phenomenon induced by this H2 bubbling-assisted transfer process. This study reveals that inherent features are produced by rolling Cu foil, which cause a saw-like corrugation in the poly(methyl methacrylate) (PMMA)/graphene stack when it is transferred onto the target substrate after the Cu foil is dissolved. During the PMMA removal stage, the graphene tearing mainly appears at the apexes of the corrugated PMMA/graphene stack, due to weak adhesion to the target substrate. To address this, we have developed a modified heat-press-assisted transfer technique that has much better control of both tearing and the formation of residues in the transferred graphene films.

Characteristics of Shear Transfer in Joint Interface Consisting of Different Materials (이종재료의 타설면을 가지는 접합계면의 전단전달 특성)

  • 김태곤;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1133-1138
    • /
    • 2000
  • The interface necessarily exists in joints using cement mortar, UP(Unsaturated Polyester : UP) mortar and SBR(SBR-latex) mortar. Characteristics of shear transfer in joint interface consisting of different materials are studied with experimental and analytical methods. The uniaxial compressive shear experiments are accomplished with various angle of inclination (35, 45, 55, 65, 75°), materials of old and new-cast mortar. In this study, The results are as follows ① Mohr-coulomb's slip theory be applied to the interface consisting different materials ② The cohesion of UP mortar is superior to that f cement mortar, SBR mortar.

  • PDF