• Title/Summary/Keyword: materially nonlinear analysis

Search Result 19, Processing Time 0.016 seconds

An Analysis of Rubber Dust-Cover for Automotive Parts (자동차용 고무 Dust Cover의 거동에 관한 연구)

  • Kang T. H.;Kim I. K.;Kim Y S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.5
    • /
    • pp.375-379
    • /
    • 2005
  • Durability of rubber dust cover in the ball joint for automotive suspension parts is analyzed by FEM and compared with experimental data. Upper open area of ball joint is sealed by dust cover for preventing outflow of the lubricating oil and intrusion of send, dust, water, etc. This rubber cover undergoes repeated loadings such as tension and compression while the car is running. Analysis about rubber material needs to consider every kinds of nonlinearities arise in finite element analysis, which are geometric nonlinearity due to large displacement and small strain, materially nonlinearity and nonlinear boundary condition such as contact. The deformation behavior of dust cover is analysed by using the commercial finite element program MARC. In the study, this program could solve these kinds of nonlinear analysis accurately. Finite element model of dust cover is considered as 3-dimensional half model based on 2-dimensional axisymmetric model. Material property of rubber is modeled by Ogden model and input data for calculation takes form uniaxial tension test of rubber specimen. The final object of the study is obtaining the design specification of dust covers and the result of analysis should be a useful data to design of rubber cover.

Resisting Strength of Ring-Stiffened Cylindrical Steel Shell under Uniform External Pressure (균일외압을 받는 링보강 원형단면 강재 쉘의 강도특성)

  • Ahn, Joon Tae;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.25-35
    • /
    • 2018
  • Resisting strength of ring-stiffened cylindrical steel shell under uniform external pressure was evaluated by geometrically and materially nonlinear finite element method. The effects of shape and amplitude of geometric initial imperfection, radius to thickness ratio, and spacing of ring stiffeners on the resisting strength of ring-stiffened shell were analyzed. The resisting strength of ring-stiffened cylindrical shells made of SM490 obtained by FEA were compared with design strengths specified in Eurocode 3 and DNV-RP-C202. The shell buckling modes obtained from a linear elastic bifurcation FE analysis were introduced in the nonlinear FE analysis as initial geometric imperfections. The radius to thickness ratios of cylindrical shell in the range of 250 to 500 were considered.

Patch loading resistance prediction of plate girders with multiple longitudinal stiffeners using machine learning

  • Carlos Graciano;Ahmet Emin Kurtoglu;Balazs Kovesdi;Euro Casanova
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.419-430
    • /
    • 2023
  • This paper is aimed at investigating the effect of multiple longitudinal stiffeners on the patch loading resistance of slender steel plate girders. Firstly, a numerical study is conducted through geometrically and materially nonlinear analysis with imperfections included (GMNIA), the model is validated with experimental results taken from the literature. The structural responses of girders with multiple longitudinal stiffeners are compared to the one of girders with a single longitudinal stiffener. Thereafter, a patch loading resistance model is developed through machine learning (ML) using symbolic regression (SR). An extensive numerical dataset covering a wide range of bridge girder geometries is employed to fit the resistance model using SR. Finally, the performance of the SR prediction model is evaluated by comparison of the resistances predicted using available formulae from the literature.

Nonlinear Analysis of Skew Plates by $C^{\circ}$-Hierarchical Plate Element ($C^{\circ}$-계층적 평판요소에 의한 경사평판의 비선형 해석)

  • 우광성;허철구;박진환
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.1
    • /
    • pp.65-76
    • /
    • 2001
  • 본 연구의 목적은 평판의 모서리 둔각이 135도까지를 갖는 재료적 비선형 경사평판을 해석하기 위해 C°-계층적 평판요소를 개발하는 것이다. 기하학적 변환을 통해 경사진 경계조건은 직각좌표계의 좌표변환을 이용하여 해결할 수 있다. 여기서, 경사경계는 경사진 변 전체 또는 경사교량의 교좌위치와 관련된 몇 개의 선택지점만을 고려할 수 있게 하였다. 이 목적을 위해 경사교량의 교좌장치의 이동방향을 설명할 수 있도록 1차 전단변형을 갖는 Reissner/Mindlin 평판이론에 기초를 둔 5-자유도 경사평판요소가 정식화되었다. 한편, 평판의 극한내하력을 추정하기 위해 von-Mises 항복기준에 기초를 둔 소성유동법칙을 갖는 증분소성이론이 채택되었다. 또한, ADINA 소프트웨어에 의한 h-version 모델과 제안된 p-version 모델을 사용하여 경사각, 경계조건과 하중의 변화에 따른 영향을 조사하였다. 해석결과는 이론값과 문헌에 보고된 수치해석값과 비교되었다. 자유도 수에 따른 정확도를 비교기준으로 한다면, 본 연구에서 제안된 해석모델은 지금까지 개발된 가장 효율적 도구의 하나라고 할 수 있다.

  • PDF

A finite strip method for elasto-plastic analysis of thin-walled structures under pure bending

  • Cheung, M.S.;Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.233-242
    • /
    • 1999
  • In the present study, the elasto-plastic analysis of prismatic plate structures subjected to pure bending is carried out using the finite strip method. The end cross-sections of the structure are assumed to remain plane during deformation, and the compatibility along corner lines is ensured by choosing proper displacement functions. The effects of both the initial geometrical imperfections and residual stresses due to fabrication are included in the combined geometrically and materially nonlinear simulation. The von-Mises yield criterion and the Prandtl-Reuss flow theory of plasticity are applied in modelling the elasto-plastic behavior of material. Newton-Raphson iterations are carried out as the rotation of the end cross sections of the structure is increased step by step. The parameter representing the overall axial strain of structure is adjusted constantly during the iteration process in order to eliminate the resulting overall axial force on any cross-section of the structure in correspondence with the assumption of zero axial force in pure bending. Several numerical examples are presented to validate the present method and to investigate the effects of some material and geometrical parameters.

p-Version Elasto-Plastic Finite Element Analysis by Incremental Theory of Plasticity (증분소성이론에 의한 p-Version 탄소성 유한요소해석)

  • 정우성;홍종현;우광성
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.217-228
    • /
    • 1997
  • The high precision analysis by the p-version of the finite element method are fairly well established as highly efficient method for linear elastic problems, especially in the presence of stress singularity. It has been noted that the merits of the p-version are accuracy, modeling simplicity, robustness, and savings in user's and CPU time. However, little has been done to exploit their benefits in elasto-plastic analysis. In this paper, the p-version finite element model is proposed for the materially nonlinear analysis that is based on the incremental theory of plasticity using the constitutive equation for work-hardening materials, and the associated flow rule. To obtain the solution of nonlinear equation, the Newton-Raphson method and initial stiffness method, etc are used. Several numerical examples are tested with the help of the square plates with cutout, the thick-walled cylinder under internal pressure, and the circular plate with uniformly distributed load. Those results are compared with the theoretical solutions and the numerical solutions of ADINA

  • PDF

Ultimate Axial Strength of Longitudinally Stiffened Cylindrical Steel Shell for Wind Turbine Tower (풍력발전 타워용 종방향 보강 원형단면 강재 쉘의 극한압축강도)

  • Ahn, Joon Tae;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.123-134
    • /
    • 2017
  • Ultimate axial strength of longitudinally stiffened cylindrical steel shells for wind turbine tower was investigated by applying the geometrically and materially nonlinear finite element method. The effects of radius to thickness ratio of shell, shape and amplitude of initial imperfections, area ratio between effective shell and stiffener, and stiffener spacing on the ultimate axial strength of cylindrical shells were analyzed. The ultimate axial strengths of stiffened cylindrical shells by FEA were compared with design buckling strengths specified in DNV-RP-C202. The shell buckling modes obtained from a linear elastic bifurcation FE analysis as well as the weld depression during fabrication specified in Eurocode 3 were introduced in the nonlinear FE analysis as initial geometric imperfections. The radius to thickness ratio of cylindrical shell models was selected to be in the range of 50 to 200. The longitudinal stiffeners were designed according to DNV-RP-C202 to prevent the lateral torsional buckling and local buckling of stiffeners.

Explicit Stress-Erection and Ultimate Load Analysis of Unit STRARCH Frame Considering Geometrically and Materially Nonlinear Characteristics (기하학적 재료적 비선형 특성을 고려한 스트라치 단위부재의 명시적 긴장설치 및 극한하중 해석)

  • Lee, Kyoung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.429-438
    • /
    • 2011
  • In this study, the explicit numerical algorithm was proposed to simulate the stress erection process and ultimate-load analysis of the strarch (stressed arch) system. The strarch system is a unique and innovative structural system and member prestress comprising prefabricated plane truss frames erected through a post-tensioning stress erection procedure. The flexible bottom chord, which has sleeve and gap details, is closed by the reaction force of the prestressing tendon. The prestress imposed on the tendon will enable the strarch system to be erected. This post-tensioning process is called "stress erection process." During this process, plastic rigid-body rotation occurs to the flexible top chord due to the excessive amount of plastic strain, and the structural characteristic is unstable. In this study, the dynamic relaxation method (DRM) was adopted to calculate the nonlinear equilibrium equation of the system, and a displacement-based finite-element-formulated filament beam element was used to simulate the nonlinear behavior of the top chord sections of the strarch system. The section of the filament beam element was composed by the amount of filaments, which can be modeled by various material models. The Ramberg-Osgood and bilinear kinematic elastic plastic material models were formulated for the nonlinear material behaviors of the filaments. The numerical results that were obtained in the present study were compared with the experiment results of the stress erection and with the results of the ultimate-load analysis of the strarch unit frame. The results of the present studies are in good agreement with the previous experiment results, and the explicit DRM enabled the analysis of the post-buckling behaviors of the strarch unit frame.

Ultimate Flexural Strength of Cylindrical Steel Shell for Wind Tower (풍력발전 타워용 원형단면 강재 쉘의 극한휨강도)

  • Ahn, Joon Tae;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.109-118
    • /
    • 2015
  • Ultimate flexural buckling strength of cylindrical steel shells for the wind turbine tower structure was investigated by applying the geometrically and materially nonlinear finite element method. The effects of initial imperfection, radius to thickness ratio, and type of steel on the ultimate flexural strength of cylindrical shell were analyzed. The flexural strengths of cylindrical shells obtained by FEA were compared with design flexural strengths specified in Eurocode 3 and AISI. The shell buckling modes recommended in DNV-RP-C202 and the out-of-roundness tolerance and welding induced imperfections specified in Eurocode 3 were used in the nonlinear FE analysis as initial geometrical imperfections. The radius to thickness ratios of cylindrical shell in the range of 60 to 210 were considered and shells are assumed to be made of SM520 or HSB800 steel.