• Title/Summary/Keyword: material strength

Search Result 8,152, Processing Time 0.05 seconds

Temperature Dependence on dielectric breakdown strength of Epoxy Nano-Composites depending on MgO (MgO를 첨가한 에폭시 나노 컴퍼지트의 절연파괴강도 온도의존성)

  • Jeong, In-Bum;Han, Hyun-Seok;Lee, Young-Sang;Cho, Kyung-Soon;Shin, Jong-Yeol;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.48-48
    • /
    • 2010
  • In this paper, we have investigated temperature dependence of dielectric breakdown voltage at epoxy with added nano-filler(MgO), which is used as a filler of epoxy additives for HVDC(high voltage direct current) submarine cable insulating material with high thermal conductivity and restraining tree to improve electrical properties of epoxy resin in high temperature region. In order to find dispersion of the specimen, the cross sectional area of nano-composite material is observed by using the SEM(Scanning Electron Microscope) and it is conformed that each specimen is evenly distributed without the cohesion. As a result, it is confirmed that the strength of breakdown of all specimen at 50 [$^{\circ}C$] decreased more than that of the dielectric breakdown strength at room temperature. When temperature increases from 50 [$^{\circ}C$] to 100 [$^{\circ}C$], we have confirmed that breakdown strength of virgin specimen decreases, but specimens with added MgO show constant dielectric breakdown strength.

  • PDF

Real-Time Prediction of Optimal Control Parameters for Mobile Robots based on Estimated Strength of Ground Surface (노면의 강도 추정을 통한 자율 주행 로봇의 실시간 최적 주행 파라미터 예측)

  • Kim, Jayoung;Lee, Jihong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.58-69
    • /
    • 2014
  • This paper proposes a method for predicting maximum friction coefficients and optimal slip ratios as optimal control parameters for traction control or slip control of autonomous mobile robots on rough terrain. This paper focuses on strength of ground surface which indicates different characteristics depending on material types on surface. Strength of various material types can be estimated by Willoughby sinkage model and by a developed testbed which can measure forces, velocities, and displacements generated by wheel-terrain interaction. Estimated strength is collaborated on building improved Brixius model with friction-slip data from experiments with the testbed over sand and grass material. Improved Brixius model covers widespread material types in outdoor environments on predicting friction-slip characteristics depending on strength of ground surface. Thus, a prediction model for obtaining optimal control parameters is derived by partial differentiation of the improved Brixius model with respect to slip. This prediction model can be applied to autonomous mobile robots and finally gives secure maneuverability on rough terrain. Proposed method is verified by various experiments under similar conditions with the ones for real outdoor robots.

Shear bond strength of indirect composite material to monolithic zirconia

  • Sari, Fatih;Secilmis, Asli;Simsek, Irfan;Ozsevik, Semih
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.267-274
    • /
    • 2016
  • PURPOSE. This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS. Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (${\alpha}$=.05). RESULTS. Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION. Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia.

A Study on The Strength Evaluation of welded Joints for Degraded Material (열화재 용접부의 강도평가에 관한 연구)

  • 정의정;윤한용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.705-710
    • /
    • 2002
  • Welding is used not only during the shipbuilding, but also during the repairing of ships. While repairing of ships, it is inevitable to weld new materials with degraded materials. In this case, it is predicted that the strength of both the sections is not identical each other. In this study, the respective welded joints in terms of mechanical properties such as microstructure, mechanical strength and fatigue crack propagation, with the component obtained from the barge used for a long-term period, were analyzed. It was found that the material degradation had a significant effect on the welded joints. The fatigue crack propagation in welded sections showed a big difference. The rate of fatigue crack growth of degraded material for both heat affected zone and parent metal was faster than that of new material. By contrast, The result within identical materials showed that the heat-affected zone was slower than that of parent metal

  • PDF

A Study on the Strength Evaluation of Welded Joints for Degraded Material (열화재 용접부의 강도평가에 관한 연구)

  • 정의정;윤한용;임명환;김태식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.75-82
    • /
    • 2002
  • Welding is used not only for the shipbuilding, but also for the repairing of ships. While repairing of ships, it is inevitable to weld new materials with degraded materials. In this case, it is predicted that the strength of both the sections is not identical each other. In this study, the respective welded joints in terms of mechanical properties such as microstructure, mechanical strength and fatigue crack propagation, with the component obtained from the barge used for a long-term period, were analyzed. It was found that the material degradation had a significant effect on the welded joints. The fatigue crack propagation in welded sections showed a big difference. The rate of fatigue crack growth of degraded material for both heat affected zone and parent metal was faster than that of new material. By contrast, the result from identical materials showed that the rate of fatigue crack growth of the heat-affected zone was slower than that of parent metal.

Strength Properties of Waste-tyre Recycling Concrete (폐타이어 혼입률에 따른 콘크리트 강도 변화에 관한 실험적 연구)

  • 손기상
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.76-80
    • /
    • 2003
  • There will be a big problem in disposing of waste tie coming from the cars. Because many of these have been thrown away to the field and environmentally polluted. New, We need to find out how to dispose or recycle these waste material. It is thought that recycling this material especially mixing with concrete will be a good idea. This study is focused how each material do its behavior due to the size of waste type particle and its amount into concrete material. 0.4mm-10mm range of particle has been applied to the material : Also, 1.0%, 1.5%, 2.0% range of tyre particle proportion has been applied to make cylinder molds. The concrete mold with waste-tyre particle has vibration-absorbing ability. It is found that 0.4 -0.6mm particle mixing concrete has been more solid organized. And this waste tyre material could be applied to the general concrete, it is found.

DC Breakdown Strength Characteristics of Low Density Polyethylene

  • Yun, Jae-Hun;Jeong, Ui-Hwan;Im, Gi-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.231-231
    • /
    • 2009
  • The main objective of the present paper is multiple effects of the incorporation of certain additives into LDPE (low density polyethylene) on some of the properties of the doped material relevant to its use as an insulating material for HVDC cables. in the present work, the effects of additive and breakdown strength, under de conditions. result of experiments are present and discussed. it is concluded that, although the incorporation of the additives may lead to certain beneficial effects such as the reduction of the dependence on temperature and breakdown strength

  • PDF

A Fundamental Study of Metakaolin as a Pozzolanic Material (콘크리트 혼화재료로서의 메타카올린의 기초적인 특성 연구)

  • 김용태;안태호;강범구;이정율;김병기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.281-286
    • /
    • 2001
  • The utilization of metakaolin as a pozzolanic material for mortar and concrete has received considerable attention in recent years. This paper estimates the fundamental properties of metakaolin as a pozzolanic material in view of fluidity and compressive strength of cement paste and mortar in comparison of silica fume, fly ash and slag. The results show that in order to obtain the same initial fluidity, metakaolin needs higher dosage of PNS superplasticizer than fly ash and slag, however, less dosage than silica fume. In view of compressive strength of mortar, metakaolin exhibits much higher compressive strength than fly ash and slag, and similar compressive strength with silica-fume when 10 % of cement is replaced with a pozzolanic material.

  • PDF

Improvement in the Super Low Core-loss Soft Magnetic Materials

  • Maeda, Toru;Sato, Atsushi;Mochida, Yasushi;Toyoda, Haruhisa;Mimura, Koji;Nishioka, Takao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1284-1285
    • /
    • 2006
  • We reported a P/M soft magnetic material with core loss value of $W_{10/1k}=68W/kg$, which is lower than that of 0.35mm-thick laminated material, by using high purity gas-atomized iron powder. Lack of mechanical strength and high cost of powder production are significant issues for industrial use. In order to achieve both low core loss and high strength by using inexpencive powder, the improvement of powder shape and surface morphology and binder strength was conducted. As the result, the material based on water-atomized powder with 80 MPa of TRS and 108 W/kg of core loss (W10/1k) was achieved.

  • PDF

Flexural and tensile properties of a glass fiber-reinforced ultra-high-strength concrete: an experimental, micromechanical and numerical study

  • Roth, M. Jason;Slawson, Thomas R.;Flores, Omar G.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.169-190
    • /
    • 2010
  • The focus of this research effort was characterization of the flexural and tensile properties of a specific ultra-high-strength, fiber-reinforced concrete material. The material exhibited a mean unconfined compressive strength of approximately 140 MPa and was reinforced with short, randomly distributed alkali resistant glass fibers. As a part of the study, coupled experimental, analytical and numerical investigations were performed. Flexural and direct tension tests were first conducted to experimentally characterize material behavior. Following experimentation, a micromechanically-based analytical model was utilized to calculate the material's tensile failure response, which was compared to the experimental results. Lastly, to investigate the relationship between the tensile failure and flexural response, a numerical analysis of the flexural experiments was performed utilizing the experimentally developed tensile failure function. Results of the experimental, analytical and numerical investigations are presented herein.