• Title/Summary/Keyword: material softening

Search Result 285, Processing Time 0.02 seconds

A Study on Laser Assisted Machining for Silicon Nitride Ceramics (I) - Preheating Characteristics and Oxidation Behaviors of Silicon Nitride Ceramics with Machining Parameters - (질화규소 세라믹의 레이저 예열선삭에 관한 연구 (I) - 공정변수에 따른 질화규소의 예열특성 및 산화거동 -)

  • Kim, Jong-Do;Lee, Su-Jin;Shu, Jeong;Lee, Jae-Hoon
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.61-66
    • /
    • 2010
  • Silicon nitride is widely used as an engineering ceramics because it has high strength, abrasion resistance and corrosion resistance even at high temperature. However, machining of silicon nitride is difficult due to its high hardness and brittleness. Laser assisted machining(LAM) allows effective cutting using CBN tool by locally heating the cutting part to the softening temperature of YSiAlON using the laser beam. The effect of preheating depending on process parameters were studied to find out the oxidation mechanism. If silicon nitride is sufficiently preheated, the surface is oxidized and $N_2$ gas is formed and escapes from the material, thereby making the cutting process more advantageous. During laser preheating process before machining, high temperature results in strong oxidation which makes the bloating, silicate layers and micro cracks. Using the results of these experiments, preheating characteristics and oxidation behavior were found out.

Properties of glass fiber by adding $Ga_2O_3$ in the $SiO_2-PbO-K_2O-Al_2O_ 3$ system for infrared sensor ($Ga_2O_3$ 첨가에 따른 $SiO_2-PbO-K_2O-Al_2O_ 3$계 적외선 센서용 glass fiber의 특성)

  • 이명원;윤상하;강원호
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1047-1052
    • /
    • 1996
  • In this study, the thermal and optical proper-ties of multicomponent oxide glass fiber for IR sensor by adding heavy metal oxide Ga$_{2}$O$_{3}$ were investigated. The fiber samples were made by rod-in tube method. The optical loss of fiber was measured in 0.3-1.8/M wavelength region. As Ga$_{2}$O$_{3}$ increased up to 12wt%, the transition and softening temperature of bulk glass were increased from 495.deg. C to 564.deg. C and from 548.deg. C to 612.deg. C respectively. Whereas the thermal expansion coefficient was decreased from 102 to 88.2*10$^{-7}$ /.deg. C. The refractive index was increased from 1.621 to 1.662, and IR cut-off wavelength was enlarged from 4.64.mu.m to 5.22.mu.m. The optical loss of fiber was decreased and more remarkably decreased in 1.146.mu.m-1.8.mu.m wavelength region.

  • PDF

Localized deformation in sands and glass beads subjected to plane strain compressions

  • Zhuang, Li;Nakata, Yukio;Lee, In-Mo
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.499-517
    • /
    • 2013
  • In order to investigate shear behavior of granular materials due to excavation and associated unloading actions, load-controlled plane strain compression tests under decreasing confining pressure were performed under drained conditions and the results were compared with the conventional plane strain compression tests. Four types of granular material consisting of two quartz sands and two glass beads were used to investigate particle shape effects. It is clarified that macro stress-strain behavior is more easily influenced by stress level and stress path in sands than in glass beads. Development of localized deformation was analyzed using photogrammetry method. It was found that shear bands are generated before peak strength and shear band patterns vary during the whole shearing process. Under the same test condition, shear band thickness in the two sands was smaller than that in one type of glass beads even if the materials have almost the same mean particle size. Shear band thickness also decreased with increase of confining pressure regardless of particle shape or size. Local maximum shear strain inside shear band grew approximately linearly with global axial strain from onset of shear band to the end of softening. The growth rate is found related to shear band thickness. The wider shear band, the relatively lower the growth rate. Finally, observed shear band inclination angles were compared with classical Coulomb and Roscoe solutions and different results were found for sands and glass beads.

Nonlinear dynamic analysis of spiral stiffened functionally graded cylindrical shells with damping and nonlinear elastic foundation under axial compression

  • Foroutan, Kamran;Shaterzadeh, Alireza;Ahmadi, Habib
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.295-303
    • /
    • 2018
  • The semi-analytical method to study the nonlinear dynamic behavior of simply supported spiral stiffened functionally graded (FG) cylindrical shells subjected to an axial compression is presented. The FG shell is surrounded by damping and linear/nonlinear elastic foundation. The proposed linear model is based on the two-parameter elastic foundation (Winkler and Pasternak). A three-parameter elastic foundation with hardening/softening cubic nonlinearity is used for nonlinear model. The material properties of the shell and stiffeners are assumed to be FG. Based on the classical plate theory of shells and von $K{\acute{a}}rm{\acute{a}}n$ nonlinear equations, smeared stiffeners technique and Galerkin method, this paper solves the nonlinear vibration problem. The fourth order Runge-Kutta method is used to find the nonlinear dynamic responses. Results are given to consider effects of spiral stiffeners with various angles, elastic foundation and damping coefficients on the nonlinear dynamic response of spiral stiffened simply supported FG cylindrical shells.

High-Temperature Rupture of 5083-Al Alloy under Multiaxial Stress States

  • Kim Ho-Kyung;Chun Duk-Kyu;Kim Sung- Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1432-1440
    • /
    • 2005
  • High-temperature rupture behavior of 5083-Al alloy was tested for failure at 548K under multiaxial stress conditions: uniaxial tension using smooth bar specimens, biaxial shearing using double shear bar specimens, and triaxial tension using notched bar specimens. Rupture times were compared for uniaxial, biaxial, and triaxial stress conditions with respect to the maximum principal stress, the von Mises effective stress, and the principal facet stress. The results indicate that the von Mises effective and principal facet stresses give good correlation for the material investigated, and these parameters can predict creep life data under the multiaxial stress states with the rupture data obtained from specimens under the uniaxial stress. The results suggest that the creep rupture of this alloy under the testing condition is controlled by cavitation coupled with highly localized deformation process, such as grain boundary sliding. It is also conceivable that strain softening controls the highly localized deformation modes which result in cavitation damage in controlling rupture time of this alloy.

A Study on Laser Assisted Machining for Silicon Nitride Ceramics (II) - Surface Characteristics of LAM Machined SSN and HIPSN - (질화규소 세라믹의 레이저 예열선삭에 관한 연구 (II) - 예열선삭된 SSN 및 HIPSN 질화규소 세라믹의 표면특성 -)

  • Kim, Jong-Do;Lee, Su-Jin;Kang, Tae-Young;Suh, Jeong;Lee, Jae-Hoon
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.80-85
    • /
    • 2010
  • This study focused on laser assisted machining (LAM) of silicon nitride ceramic that efficiently removes the material through machining of the softened zone by local heating. The effects of laser-assisted machining parameters were studied for cost reduction, and active application in processing of silicon nitride ceramics in this study. Laser assisted machining of silicon nitride allows effective cutting using CBN tool by local heating of the cutting part to the softening temperature of YSiAlON using by the laser beam. When silicon nitride is sufficiently preheated, the surface is oxidized and decomposed and then forms bloating, micro crack and silicate layer, thereby making the cutting process more advantageous. HIPSN and SSN specimens were used to study the machining characteristics. Higher laser power makes severer oxidation and decomposition of both materials. Therefore, HIPSN and SSN specimens were machined more effectively at higher power.

A Study on Wear Properties of Alloys in High Temperature Condition (고온 환경에서 합금의 마모 및 마찰 특성에 관한 연구)

  • Choe, S.Y.;Nemati, Narguess;Kim, D.E.
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.24-29
    • /
    • 2019
  • In this work we investigated the friction and wear characteristics of a magnesium alloy, which has been receiving much attention as a light metal in industrial applications such as automobiles and aerospace. Magnesium is one of the lightest structural material that has high specific strength, lightweight, low density and good formability. However, current issue of using magnesium alloy is that magnesium has weakness against temperature. As the temperature increases, magnesium undergoes poor creep resistance and ease of softening, and therefore, its mechanical strength decreases sharply. To solve this issue, a new type of magnesium alloy that retains high strength at high temperature has been proposed. The tribological behavior of this alloy was investigated using a tribotester with reciprocating motion and heating plate. A stainless steel ball was used as a counter surface. Results showed that extrusion process has similar wear behavior to the commonly used casting process but retains good mechanical strength and durability. The presence of an alloying element enhanced the wear properties especially in high temperature. This study is expected to be utilized as fundamental data for the replacement of high density materials currently used in mechanical industries to a much lighter and durable heat-resistant materials.

The Effect of Calcium on Microstructure of AZ61 Magnesium Alloy during Annealing Heat Treatment (AZ61 마그네슘 합금의 어닐링 중 Ca의 첨가에 따른미세조직 변화에 미치는 영향)

  • Kim, Kibeom;Jeon, Joonho;Kim, Kwonhoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.53-59
    • /
    • 2021
  • Due to high specific strength and low density, AZ series magnesium alloys have been receiving high interest as a lightweight material. However, their industrial application is limited due to the phenomenon that the strength decreases at elevated temperature by the occurrence of softening effect because of the Mg17Al12 phase decomposition. To solve this problem, many research were conducted to increase the high-temperature strength by forming a thermal stable second-phase component by adding new elements to the AZ magnesium. Especially, adding Ca to AZ magnesium has been reported that Ca forms the new second-phase. However, studies about the analysis of decomposition or precipitation temperature, formation composition, and components to understand the formation behavior of these precipitated phases are still insufficient. Therefore, the effect of Ca addition to AZ61 on the phase change and microstructure of the alloy during annealing was investigated. As a result of analysis of the initial and heat-treated specimen, AZ61 formed α-Mg matrix and precipitated phase of Mg17Al12, and AZX611 formed one more type of precipitated phase, Al2Ca. Also, Al2Ca was thermal stable at high temperatures. And after annealing, the laves phase was decomposed to under 10 ㎛ size and distributed in matrix.

Nonlinear probabilistic shear panel analysis using advanced sampling techniques

  • Strauss, Alfred;Ju, Hyunjin;Belletti, Beatrice;Ramstorfer, Maximilian;Cosma, Mattia Pancrazio
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.179-193
    • /
    • 2022
  • The shear behaviour of reinforced concrete members has been studied over the past decades by various researchers, and it can be simulated by analysing shear panel elements which has been regarded as a basic element of reinforced concrete members subjected to in-plane biaxial stresses. Despite various experimental studies on shear panel element which have been conducted so far, there are still a lot of uncertainties related to what influencing factors govern the shear behaviour and affect failure mechanism in reinforced concrete members. To identify the uncertainties, a finite element analysis can be used, which enables to investigate the impact of specific variables such as the reinforcement ratio, the shear retention factor, and the material characteristics including aggregate interlock, tension stiffening, compressive softening, and shear behaviour at the crack surface. In this study, a non-linear probabilistic analysis was conducted on reinforced concrete panels using a finite element method optimized for reinforced concrete members and advanced sampling techniques so that probabilistic analysis can be performed effectively. Consequently, this study figures out what analysis methodology and input parameters have the most influence on shear behaviour of reinforced concrete panels.

Nonlinear vibration and primary resonance of multilayer functionally graded shallow shells with porous core

  • Kamran Foroutan;Liming Dai
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.335-351
    • /
    • 2023
  • This research studies the primary resonance and nonlinear vibratory responses of multilayer functionally graded shallow (MFGS) shells under external excitations. The shells considered with functionally graded porous (FGP) core and resting on two types of nonlinear viscoelastic foundations (NVEF) governed by either a linear model with two parameters of Winkler and Pasternak foundations or a nonlinear model of hardening/softening cubic stiffness augmented by a Kelvin-Voigt viscoelastic model. The shells considered have three layers, sandwiched by functionally graded (FG), FGP, and FG materials. To investigate the influence of various porosity distributions, two types of FGP middle layer cores are considered. With the first-order shear deformation theory (FSDT), Hooke's law, and von-Kármán equation, the stress-strain relations for the MFGS shells with FGP core are developed. The governing equations of the shells are consequently derived. For the sake of higher accuracy and reliability, the P-T method is implemented in numerically analyzing the vibration, and the method of multiple scales (MMS) as one of the perturbation methods is used to investigate the primary resonance. The results of the present research are verified with the results available in the literature. The analytical results are compared with the P-T method. The influences of material, geometry, and nonlinear viscoelastic foundation parameters on the responses of the shells are illustrated.