• Title/Summary/Keyword: material recycle

Search Result 272, Processing Time 0.023 seconds

Liquid-phase Thermal Degradation Properties of Waste Plastic Film (폐플라스틱 필름의 액상 열분해 특성에 관한 연구)

  • Hwang, T.S.;Kim, Y.S.;Kang, T.W.;Hwang, E.H.
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.116-121
    • /
    • 2003
  • In this study, the thermal degradation process has been investigated at various reaction temperature$(350{\sim}400^{\circ}C)$ and times$(30{\sim}120\;min)$ in order to recycle waste plastic films as solid state wax. Waste plastic films were easily melted by adding a small amount of waxes. The effects of wax addition and nitrogen flow rate on their thermal degradation properties were investigated. FT-IR, GPC and viscometer were used to analyze properties of the solid wax including the structure, molicular weight distribution and melt viscosity. The average molecular weight of solid wax was decreased with increasing the reaction time, temperature and amount of wax added, Also, the viscosity of solid wax decreased with increasing the stirring speed at a constant reaction temperature and time, and its viscosity got close to zero above $390^{\circ}C$.

  • PDF

Mechanical properties of ABS resin reinforced with recycled CFRP

  • Ogi, Keiji;Nishikawa, Takashi;Okano, Yasutaka;Taketa, Ichiro
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.181-194
    • /
    • 2007
  • This paper presents the mechanical properties of a composite consisting of acrylonitrile-butadiene-styrene (ABS) resin mixed with carbon fiber reinforced plastics (CFRP) pieces (CFRP/ABS). CFRP pieces made by crushing CFRP wastes were utilized in this material. Nine kinds of CFRP/ABS compounds with different weight fraction and size of CFRP pieces were prepared. Firstly, tensile and flexural tests were performed for the specimens with various CFRP content. Next, fracture surfaces of the specimens were microscopically observed to investigate fracture behavior and fiber/resin interface. Finally, the tensile modulus and strength were discussed based on the macromechanical model. It is found that the elastic modulus increases linearly with increasing CFRP content while the strength changes nonlinearly. Microscopic observation revealed that most carbon fibers are separated individually and dispersed homogeneously in ABS resin. Epoxy resin particles originally from CFRP are dispersed in ABS resin and seem to be in good contact with surrounding resin. The modulus and strength can be expressed using a macromechanical model taking account of fiber orientation, length and interfacial bonding in short fiber composites.

The Learning Effect of Elementary School Environment Education Program by the Reflective Thinking Strategy (반성적 사고 전략을 활용한 초등학교 환경교육 프로그램의 학습 효과)

  • Kim, Bo-Ram;Shim, Kew-Cheol;So, Keum-Hyun;Yeau, Sung-Hee
    • Journal of Korean Elementary Science Education
    • /
    • v.30 no.3
    • /
    • pp.271-281
    • /
    • 2011
  • The environmental education is based on the assumption that accurate knowledge and attitude could be linked to real action, but those have no effect on changing the behavior. To effect the change in behavior, we need to consider the reflective thinking which can make people change their behavior. The strategies to accelerate the reflective thinking are five steps of the reflective thinking process and the interaction through the discussion of students. And also, it is more proper if the contents are based on the real experiences of the students. Thus, this study tried to know whether the improvement of reflective thinking was able to affect to the environmental behavior. The environment education program was applied to the 60 elementary school 6th grade students in Gyeonggi-do and the survey methods were presented in the general experimental curriculum. To study 6th subjects (energy, harmful chemical material, heavy metal and agricultural chemicals, food additive, environmental friendly consumption, and recycle) was developed. This study shows the effect of the program on the environment knowledge, the environment behavior, the level of reflective-thinking and communication ability.

Optimal Hydrogen Recycling Network Design of Petrochemical Complex (석유화학단지 수소 재활용 최적 네트워크 설계)

  • Jeong, Changhyun;Lee, Chul-Jin;Kim, Dae-hyeon;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.25-31
    • /
    • 2007
  • In a petrochemical complex, large amount of hydrogen is produced as a by-product and used as a fuel in petrochemical and oil refinery plants. By recycling this byproduct hydrogen as a raw material, the value of hydrogen can be greatly improved. This paper proposes a design methodology for optimal hydrogen recycle network between plants in petrochemical complex by analyzing the hydrogen pinch, required cost and constraints.

The analysis of the actual condition regarding the system formation for the continuation of product life-cycle (제품수명주기 연장을 위한 시스템 형성에 관한 실태분석)

  • Shin Ki-Bong
    • Management & Information Systems Review
    • /
    • v.7
    • /
    • pp.227-245
    • /
    • 2001
  • The object that we have researched the design for a long life of product is to search for the method to cope with the various environment problems where our mankind is confronting in the field of Production Design. The environment problem on earth is affecting seriously the enterprise which produces the product, the user who consumes it and even the field of product design. Now we live our daily life with a lot of artifacts while the citification and modernization have been progressing around us. Especially, 20 century was the times of the highly advanced scientific civilization and industrialization. Therefore it affected decisively our life environment base nowadays. The result was that our human life became rich because of the advanced development of industry, productivity and distribution structure. On the other side, the industrial system in the period of these massive production and massive consuming is bearing various problems proportionally. Those are the depletion of resources and energy, earth environmental pollution and various kinds of waste. In addition, the material which cannot recycle is appearing at the large quantity. This is the actuality of now. Our subject is how product design will cope with it as counter measures and the subject is very important to our mankind and earth environment.

  • PDF

The Strategy for Management of Plastic Waste in Korea through the Recycling Policy in Developed Countries (선진국의 폐플라스틱 재활용 정책에 의한 국내 관리 전략 마련)

  • Choi, Hyeong-Jin;Choi, Yong;Rhee, Seung-Whee
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.709-720
    • /
    • 2018
  • Since the import ban of plastic waste in China has been enforced, plastic wastes were not properly collected and recycled in Korea. Hence, the management strategies for plastic waste in Korea should be improved by examining the regulations and policy in developed countries such as United States, Japan, EU and United Kingdom. The management strategy for the recycling cycle should be implemented to expand the labeling system of separation and discharge, reduce the consumption of plastic products, automate the separation and sorting method in recycling facilities, and improve the economical efficiency of the recycling cycle. The concept of residual waste (secondary waste) in the material flow analysis should be implemented to identify the shortage point in the plastic waste stream. Finally, the cooperation with international communities is required for a transboundary movement of plastic waste, which includes participation at the working group of international standards to recycle plastic waste.

A Study of the Bottom Ash as Environmentally Grouting Materials (Bottom Ash를 이용한 그라우팅재의 환경적 연구)

  • Doh, Young-Gon;Kwon, Hyuk-Doo;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.5-11
    • /
    • 2006
  • The purpose of this study was to examine the proper mixing ratio of ordinary portland cement and Bottom Ash to recycle the Bottom Ash, which is an industrial waste. After the evaluation, the compressive strength and durability were assessed using the mixture of completely weathered soil (Hwangto), weathered granite soil, and Bentonite. Then environmental friendliness of this mixed material was examined through heavy metal leaching method. It was found out that proper mixing ratio is 6:4, and that the 6% mixture quantity of completely weathered soil (Hwangto), weathered granite soil, and Bentonite is the most effective for compressive strength and durability It was also found out through heavy metal leaching method that the Bottom Ash could be below the standard of the Clean Water Law.

Synthesis of Pd/Cu-Fe polymetallic nanoparticles for in situ reductive degradation of p-nitrophenol

  • Wenbin, Zhang;Lanyu, Liu;Jin, Zhao;Fei, Gao;Jian, Wang;Liping, Fang
    • Membrane and Water Treatment
    • /
    • v.13 no.2
    • /
    • pp.97-104
    • /
    • 2022
  • With a small particle size, specific surface area and chemical nature, Pd/Cu-Fe nanocomposites can efficiently remove the organic compounds. In order to understand the applicability for in situ remediation of contaminated groundwater, the degradation of p-nitrophenol by Pd/Cu-Fe nanoparticles was investigated. The degradation results demonstrated that these nanoparticles could effectively degrade p-nitrophenol and near 90% of degradation efficiency was achieved by Pd/Cu-Fe nanocomposites for 120 min treatment. The efficiency of degradation increased significantly when the Pd content increased from 0.05 wt.% and 0.10 wt.% to 0.20 wt.%. Meanwhile, the removal percentage of p-nitrophenol increased from 75.4% and 81.7% to 89.2% within 120 min. Studies on the kinetics of p-nitrophenol that reacts with Pd/Cu-Fe nanocomposites implied that their behaviors followed the pseudo-first-order kinetics. Furthermore, the batch experiment data suggested that some factors, including Pd/Cu-Fe availability, temperature, pH, different ions (SO42-, PO43-, NO3-) and humic acid content in water, also have significant impacts on p-nitrophenol degradation efficiency. The recyclability of the material was evaluated. The results showed that the Pd/Cu-Fe nanoparticles have good recycle performance, and after three cycles, the removal rate of p-nitrophenol is still more than 83%.

Purification of wastewater from paper factory by superconducting magnetic separator (초전도 자기분리에 의한 제지폐수의 정수)

  • Ha, Dong-Woo;Kim, Tae-Hyung;Kwon, Jun-Mo;Sohn, Myung-Hwan;Baik, Seung-Kyu;Oh, Sang-Soo;Ha, Hong-Soo;Ko, Rock-Kil;Kim, Ho-Sup;Kim, Young-Hun;Ha, Tae-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.342-343
    • /
    • 2009
  • Paper factories use a large amount of water and same amount of wastewater is generated. It is important to purity and recycle the wastewater because of water shortages and water pollution. The existing water treatment facilities like precipitation process need large-scale equipment and wide space to purity the wastewater of paper factory. High gradient magnetic separation (HGMS) system has the merits to purity rapidly because of large voids at filter and to occupy small space. In this paper, two types of superconducting magnets were used for HGMS systems. Cryo-cooled Bi-2223 superconducting magnet system with 70 mm room temperature bore and 200 mm of height was prepared. Cryo-cooled Nb-Ti superconducting magnet with 100 mm room temperature bore and 600 mm of height was used for magnetic separator. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The various magnetic seeding reactions were investigated to increase the reactivity of coagulation. The effects of magnetic separation of wastewater were investigated as variation of magnetic field strength and flow rate of wastewater.

  • PDF

Assesment of Applicability of Recycled Aggregates for Highway Pavement Materials (도로포장 재료로서 폐콘크리트 재생골재의 활용성 연구)

  • Kim, Kwang-Woo;Ryu, Neung-Hwan;Doh, Young-Soo;Li, Xiang-Fan
    • International Journal of Highway Engineering
    • /
    • v.3 no.2 s.8
    • /
    • pp.103-112
    • /
    • 2001
  • This study was performed to evaluate applicability of recycled aggregates as subbase and surface concrete materials for cement concrete pavement. Laboratory compaction test, CBR test and plate load bearing test were conducted to evaluate applicability for pavement subbase materials. Recycled concrete for surface course was manufactured with a design strength of $280kgf/cm^2$. Normal coarse aggregate was substituted with recycled aggregates with five different ratios, 0%, 20%, 40%, 60% and 80% for recycled concrete mixes. Fresh concrete Properties, concrete strength properties for the five substitution percentages of recycled aggregates after 28-day curing and freezing-and-thawing resistance were evaluated experimentally. Based on the experimental results, it was concluded that the recycled aggregate was the material good enough to use for subbase material, and 40% or lower substitution ratio was an appropriate percentage of recycled aggregates replacement for surface concrete.

  • PDF