• Title/Summary/Keyword: material modeling

Search Result 1,813, Processing Time 0.028 seconds

A prediction of Ring Frame Composite Properties Using Discretization Method (이산화 기법을 이용한 링프레임 복합재의 기계적 물성 예측)

  • Jeon, Yong Un;Kim, Yong Ha;Kim, Pyung Hwa;Kim, Hwi yeop;Park, Jung Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.939-941
    • /
    • 2017
  • The use of composites is increasing for lightweight aerospace structures. Among these structures, the ring frame and the parts of the projectile body are mainly made of a fiber reinforced composite material which is less susceptible such as delamination to structural damage. As the use of fiber reinforced composites increases, interest in modeling efficient methods of stiffness and strength is increasing. This paper predict the mechanical strength according to the repeating unit cell(RUC) of the 2-D triaxial braided composites of fiber reinforced composites. Yarn slice definition, incremental approach and stiffness reduction model were used as strength prediction. Finally, the results of strength prediction are verified by comparing with experimental data of 2-D triaxial braided composites specimens.

  • PDF

Mathematical Modeling for Leaching and dissolution of Solidified Radioactive Waste in a Geologic Reposiory (지하 처분장에서의 방사성폐기물 고화체의 용출 및 용해에 대한 수학적 모형 분석)

  • Kim, Chang-Lak;Park, Kwang-Sub;Cho, Chan-Hee;Kim, Jhinwung;Suh, In-Suk
    • Nuclear Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.120-131
    • /
    • 1988
  • A souce term model describes mathematically the source of radionuclides as they begin slow migration and decay in deep groundwater. Various source term models based on mass-transfer analysis and measurement-based source term models are reviewed. Ganerally, two processes are involved in leaching or dissolution: (1) chemical reactions and (2) mass transfer by diffusion. The chemical reaction controls the dissolution rates only during the early stage of exposure to groundwater. The exterior-field mass transfer may control the long term dissolution rates from the waste solid in a geologic repository. Mass-transfer analyses re3y on detailed and careful application of the governing equations that describe the mechanistic processes of transport of material between and within phases. If used correctly, source term models based on mass-transfer theory are valuable and necessary tools for developing reliable predictions.

  • PDF

Air-tightness Evaluation of Tube Structures for Super-speed Tube Railway Systems: I. Analytical Modeling and Material Test (초고속 튜브철도 시스템을 위한 튜브 구조물의 기밀성 평가 : I. 해석모델 수립 및 재료 기밀성)

  • Park, Joo-Nam;Nam, Seong-Won;Kim, Lee-Hyeon;Yeo, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.143-150
    • /
    • 2011
  • This paper presents a preliminary study for air-tightness evaluation of vacuum tube structures for super-speed tube railway systems. The formula for flow rate of the air caused by the pressure difference of the inside and outside of the tube structure is derived based on Darcy's law. A test is then performed to measure the air-permeability of concrete with various compressive strengths, the result of which is used for analytical simulation of the air intrusion for a tube structure with a preliminarily defined section. It has been shown that concrete with the compressive strength of at least more than 50MPa is recommended for effective operation and maintenance of the vacuum pump systems, as the air-permeability of concrete is inversely proportional to the exponent of its compressive strength.

Orthophoto Application for Geo-spatial Information Acquisiton of Construction Area(DAM) (공사지역(댐)의 지형정보구축을 위한 정사영상의 활용)

  • 한승희;이형석;이성순
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.4
    • /
    • pp.395-403
    • /
    • 2000
  • It is so sensitive that the matter of compensation for private possessions caused in the course of public construction planning is very important. Especially, more logical planning is necessary when the dam be constructed, because it is mainly controlled by the surface of water, and if that planning is made public, artificial change is occurred in land use in that area for the purpose of rising the compensation. In this study, the plan for the application of aerial photo based ortho image was drew up for solving these problems and for the rational, rapid compensation. Ortho image was made by aerial photo, used as reading material for the change in land use. The modeling of drainage basin, came under the planning surface of water, and the 3D simulation were performed for the scene analysis, the change understanding in land use for a lot number in a certain period by overlapping the digital image, the digital land registration map, and the digital topography map as well as the analysis of the admitted land followed by the height of reservoir water.

  • PDF

Computer Simulation on the Poling Mechanism for the Control of 2nd Order Optical Nonlinearity in Silica Glass (2차 비선형 광특성의 제어를 위한 실리카 유리의 전기분극 기구 전산모사)

  • Yu, Ung-Hyeon;Lee, Seung-Gyu;Sin, Dong-Uk;Jeong, Yong-Jae
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.207-214
    • /
    • 2001
  • Silica glass is a core material for optical fiber in optical telecommunications, but its centrosymmetry eliminates the second order nonlinearity. But it is experimentally well known that the space charge polarization induces the Second Harmonic Generation (SHG) when a strong DC voltage is applied to silica glass for a long period of time with metal blocking electrodes. In this report, the results of a theoretical calculation of the nonlinear optical property caused by the space charge polarization, and a model of a numerical analysis to predict the small chance in nonlinear optical property as functions of time and space are provided. Assuming that amorphous silica is a solid state electrolyte and sodium ion is the only mobile charge carrier, 'Finite Difference Method' was employed for modeling of numerical analysis. The distributions of the concentration of sodium ion and electric field as functions of a normalized length of the specimen and a normalized applied voltage were simulated.

  • PDF

Work Environment Modeling and Excavator Moving Plan for Automated Earthworks (자동화 토공을 위한 작업환경 모델링 및 굴삭기 이동계획)

  • Kim, Sung-Keun;Cho, Ye-Won;Kim, Ha-Yearl;Ock, Jong-Ho
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.343-346
    • /
    • 2007
  • Recent advances in automation and robotic technologies in the manufacturing industry suggest that the greater level of automation may be extremely beneficial for the construction industry. However, only some of the high-technology advances may be applied to the construction industry due to the fast-changing construction environment in which work locations are constantly changing and material, equipment, and workers are always moving. The earthwork operation for site development is a good candidate for applying automation technology, because it is a very repetitive and tedious task and needs lots of construction equipment. This paper presents the model of a construction environment and a moving plan for an automated earthwork system, which can produce an effective moving path of an excavator platform with an Octree model. To generate the moving path, the know-how of skilled operators and construction managers is added in the proposed model.

  • PDF

INFLUENCE OF VARIOUS PROPERTIES OF POST AND CORE ON THE STRESS DISTRIBUTION IN ENDODONTICALLY TREATED TOOTH (다양한 포스트와 코어의 물성이 근관치료된 치근의 응력분산에 미치는 영향)

  • Cho Jin-Hyun;Lee Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.10-19
    • /
    • 2006
  • Statement of problem : The various kinds of properties of post and core may affect the stress distribution to the root of endodontically treated teeth Purpose: To evaluate the influence of various kinds of properties of post and core to the stress distribution to the root of endodontically treated teeth. Material and methods: Mandibular first premolar, prepared by general shape of post and core with gold crown, was used to two dimensional axisymmetric modeling for finite element analysis. Then property values of 8 different kinds of post and core was substituted for each. Finally, stress distribution shown areas around the root of post and core was analysed after applying 50N of vortical and oblique load. Results: 1. Stress value of oblique load was much higher than the maximum stress value of vertical load. 2. Under oblique load, very concentrated stress was located on post periapical area and variations in stress were very severe. Contrary to this, stress distribution was relatively uniform in vertical load. 3. Post materials with higher elastic modulus showed relatively more apically focused stress, and post materials with lower elastic modulus showed stress focused on cervical area on the axial wall of post. 4. Stress change according to the properties of core was shown only in the cervical area of post and below core as the higher elastic modulus, then increased in stress. 5. Post and core with medium value of elastic modulus showed relatively uniform stress distribution. Conclusions: Post materials with higher elastic modulus showed relatively more apically focused stress, and post materials with lower elastic modulus showed stress focused on cervical area on the axial wall of post. Stress change according to the properties of core was shown only in the cervical area of post and below core.

Analysis on the Energy Balance and Performance Variation of the Power Plant by using the Heavy Residual Oil (중질잔사유 적용시 발전플랜트의 에너지 수지 및 성능 변화 분석)

  • Park, Ho-Young;Kim, Tae-Hyung
    • Journal of Energy Engineering
    • /
    • v.17 no.2
    • /
    • pp.107-115
    • /
    • 2008
  • The numerical analysis of energy and material balance, and plant performance has been carried out when applying the heavy residual oil instead of heavy oil to the existing heavy oil power station. The performance analysis model has been constructed for A heavy oil power station in Korea, and the modeling results were compared with the design data in order to ensure the validity of the model, and further compared with the plant operation data. With the heavy residual oil, the simulation gave 315 MW in power output, which is higher than that of the heavy oil combustion, but the plant efficiency turned out to be lower. The sensitivity analysis of heat rate for the changes in cooling water and ambient temperature, flue gas recirculation and power output has provided valuable information for the optimal operation of the power station.

The Analysis of Pollination Potential Environment for Apis mellifera in Seoul Using Maxent Modeling Approach (Maxent 모델을 이용한 양봉꿀벌의 서울시 수분 잠재환경 분석)

  • Kim, Yoon-Ho;Cho, Yong-Hyeon;Bae, Yang-Seop;Kim, Da-Yoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.4
    • /
    • pp.85-96
    • /
    • 2020
  • The honeybee serves for most entomophilous flowers. They are a core species for maintaining the ecological system. Though the urban ecological system needs bees' mediation of pollination as well, we have little understanding on how the honeybee reacts to the physical environments of an urban city. This study is a basic research to enhance the potential environment for pollination in an urban area and aims to review the urban environmental variables which are highly linked to the pollination mediations by the honeybee. The study composed a Maxent model by adopting nine urban environmental variables and the locations of the Apis mellifera's appearances around 52 spots in Seoul. The variables reflect the ecology of the Apis mellifera. Of the urban environmental variables used for the model composition, six variables were found as not having meaningful correlations with the Apis mellifera's appearances and finally, building coverage, actual vegetation and land cover were selected as the appearance variables of the Apis mellifera. The AUC, the reliability indicator of the final model was 0.791 (sd=0.077). And the importance data of the variables used for the model were 55.6%, 27.9%, and 16.5% for building coverage, actual vegetation and land cover, respectively. The result of the study showed that the building coverage has the highest correlation with the appearance of the honeybee. And, as per the actual vegetation, the artificially tree planted area as well as the cultivated field and meadow in an urban area were functioning as the most important environmental conditions for the honeybee to be inhabitable. The study is expected to be utilized as the base material for the urban planning and park green area planning to enhance the potential environment for pollination in an urban area.

Understanding Three-dimensional Printing Technology, Evaluation, and Control of Hazardous Exposure Agents (3D 프린팅 기술의 이해, 유해 인자 노출 평가와 제어)

  • Park, Jihoon;Jeon, Haejoon;Oh, Youngseok;Park, Kyungho;Yoon, Chungsik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.241-256
    • /
    • 2018
  • Objectives: This study aimed to review the characteristics of three-dimensional printing technology focusing on printing types, materials, and health hazards. We discussed the methodologies for exposure assessment on hazardous substances emitted from 3D printing through article reviews. Methods: Previous researches on 3D printing technology and exposure assessment were collected through a literature review of public reports and research articles reported up to July 2018. We mainly focused on introducing the technologies, printing materials, hazardous emissions during 3D printing, and the methodologies for evaluation. Results: 3D printing technologies can be categorized by laminating type. Fused deposition modeling(FDM) is the most widely used, and most studies have conducted exposure assessment using this type. The printing materials involved were diverse, including plastic polymer, metal, resin, and more. In the FDM types, the most commonly used material was polymers, such as acrylonitrile-butadiene-styrene(ABS) and polylactic acids(PLA). These materials are operated under high-temperature conditions, so high levels of ultrafine particles(mainly nanoparticle size) and chemical compounds such as organic compounds, aldehydes, and toxic gases were identified as being emitted during 3D printing. Conclusions: Personal desktop 3D printers are widely used and expected to be constantly distributed in the future. In particular, hazardous emissions, including nano sized particles and various thermal byproducts, can be released under operation at high temperatures, so it is important to identify the health effects by emissions from 3D printing. Furthermore, appropriate control strategies should be also considered for 3D printing technology.