• Title/Summary/Keyword: material Intensity

Search Result 1,575, Processing Time 0.029 seconds

Numerical analysis of interface crack problem in composite plates jointed with composite patch

  • Cetisli, Fatih;Kaman, Mete O.
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.203-220
    • /
    • 2014
  • Stress intensity factors are numerically investigated for interfacial edge crack between two dissimilar composite plates jointed with single side composite patch. Variation of stress intensity factor under Mode I loading condition is examined for different material models and fiber orientation angles of composite plates and patch. ANSYS 12.1 finite element analysis software is used to obtain displacements of crack surfaces in the numerical solution and repaired plates are modeled in three dimensions. Obtained results are presented in the form of graphs. It is found that fiber orientation angle of composites is an effective parameter on interfacial stress intensity factor.

Determination of the Stress Intensity Factor by the Method of Caustics (CAUSTICS방법에 의한 응력확대계수 결정)

  • Kim, S.C.;Lee, O.S.;Han, M.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.8 no.1
    • /
    • pp.22-29
    • /
    • 1988
  • The optical method of reflected and transmitted caustics has been utilized in mechanics investigations. This relatively new experimental technique has been successfully applied on various fracture analysis such as static and dynamic c rack propagation studies, some elasticity problems and contact stress, etc, In this study, the stress intensity factors in thin polycarbonate specimens, a kind of optically anisotropic material, under Mode I loading condition are estimated by the method of caustics. The values of stress intensity factors obtained from theoretical caustics shape are compared by the experiment. It is confirmed that the two stress intensity factors agree well with Srawley's solution.

  • PDF

Structural Intensity Analysis of Plate Structures Using Modal Analysis (모달해석기법을 이용한 판 구조물의 진동인텐시티 해석)

  • 정상민;조대승;김사수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.319-326
    • /
    • 1998
  • Structural intensity of plates experiencing bending vibration is analytically evaluated using the modal analysis based on the assumed mode method. In the analysis, material internal loss and localized damping are considered. The power obtained by structural intensity integration over the circle containing the excitation source is compared with the power injected into plates to verify the accuracy of the presented method and; to evaluate the convergence of mode superposition. The intensity integration is carried out varying the circle radius and the integral step to investigate their effects in case of the power estimation using structural intensities. In addition, the dominant component among internal forces in the energy transfer by the bending vibration of a stiffened plate is investigated.

  • PDF

Determination of Stress Intensity Factor for the Crack in Anisotropic Solids Using the Finite Element Method (유한요소법에 의한 이방성재료내 균열의 응력확대계수 결정)

  • Lim, W.K.;Jin, Y.K.;Kang, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.234-239
    • /
    • 2001
  • The stress intensity factors have been widely used in numerical studies of crack growth direction. However in many cases, omissive terms of the series expansion are quantitatively significant, so we consider the computation of such terms. For this purpose, we used the finite element method with isometric quadratic quarter-point elements. For examples, infinite square plate with a slant crack subjected to a uniaxial load is analyzed. The numerical analysis were performed for the wide range of crack tip element lengths and inclined angles. The numerical results obtained are compared with the theoretical solutions. Also they were accurate and efficient.

  • PDF

A Study on the Effect of Micro Defect on Stress Intensity Factor of Through-Crack by Boundary Element Method (경계요소법을 이용한 관통균열의 응력확대계수에 미치는 미소결함의 영향에 관한 연구)

  • Seong, Gi-Deuk;Yang, Won-Ho;Jo, Myeong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.560-566
    • /
    • 2000
  • Many researchers have dealt with the problems of fracture mechanics. Generally, these researches are concerned with crack in isotropic material without other micro defects. Actual structure, however, may contain micro defects as well as crack in manufacture processing or operation. If it contains mi defects near a crack, some different characteristics will be appear in fracture behaviors of the crack. This study examines the effect of the micro defect on stress intensity factor of center slant crack rectangular plate subjected to uniform uniaxial tensile stress. In this study, boundary element method(BEM) is used for analysis in stress intensity factor(SIF).

Stress intensity factors for an interface crack between an epoxy and aluminium composite plate

  • Itou, S.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.99-109
    • /
    • 2007
  • A cracked composite specimen, comprised of an epoxy and an aluminium plate, was fractured under a tensile load. In this paper, two crack configurations were investigated. The first was an artificial center crack positioned in the epoxy plate parallel to the material interface. The other was for two edge cracks in the epoxy plate, again, parallel to the interface. A tensile test was carried out by gradually increasing the applied load and it was verified that the cracks always moved suddenly in an outward direction from the interface. The d/a ratio was gradually reduced to zero, and it was confirmed that the maximum stress intensity factor value for the artificial center crack, $K_{{\theta}{\theta}}^{max}$, approached that of an artificial interface crack,$K_{{\theta}{\theta}}^{ifc\;max}$ (where: 2a is the crack length and d is the offset between the crack and interface). The same phenomenon was also verified for the edge cracks. Specifically, when the offset, d, was reduced to zero, the maximum stress intensity factor value, $K_{{\theta}{\theta}}^{max}$, approached that of an artificial interface edge crack.

Wear Behavior as Hardness Difference of Material in the Dry Sliding Wear Tests of Using Leaf-Spring (판스프링을 사용한 건식마모실험에서 재료경도에 따른 마모거동)

  • Kim, Jung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.27-33
    • /
    • 2008
  • It is shown that the rate of wear can be related to 'index of wear intensity' using a leaf-spring in the disc on disk on wear tests. Since both upper and lower specimens have used the same hardness values, equivalent hardness of 'the index of wear intensity' used the mean hardness value of specimens. This index is derived from the external variables of load, sliding speed and the hardness of the sliding pairs. The wear behavior as the hardness of the sliding elements on the dry wear has been investigated using a disc on disc configuration. The materials of the specimens are used as ten kinds along their hardness. Using experimental data, we figured the relationship between wear rate and index of wear intensity. A newly wear equation had been derived the result using a leaf-spring in disc on disc wear system.

Dynamic stress intensity factors for two parallel cracks in an infinite orthotropic plate subject to an impact load

  • Itou, Shouetsu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.697-708
    • /
    • 2009
  • Stresses are solved for two parallel cracks in an infinite orthotropic plate during passage of incoming shock stress waves normal to their surfaces. Fourier transformations were used to reduce the boundary conditions with respect to the cracks to two pairs of dual integral equations in the Laplace domain. To solve these equations, the differences in the crack surface displacements were expanded to a series of functions that are zero outside the cracks. The unknown coefficients in the series were solved using the Schmidt method so as to satisfy the conditions inside the cracks. The stress intensity factors were defined in the Laplace domain and were inverted numerically to physical space. Dynamic stress intensity factors were calculated numerically for selected crack configurations.

Evaluation of Stress Intensity Factors and T-Stress Using a Conservation Integral (보존적분을 이용한 응력강도계수와 T-응력의 계산)

  • 범현규;엄윤용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.121-126
    • /
    • 1994
  • A mutual integral, which has the conservation property, is applied to the problem of a crack in an isotropic elastic material. The stress intensity factors $K_{I}, K_{II}, K_{III}$ and T-stress for the problem in an infinite medium are easily obtained by using the mutual integral without solving the boundary value problem. The auxiliary solutions necessary in the proposed method are taken from the known asymptotic solutions. This method is amenable to numerical evaluation of the stress intensity factors and T-stress if the crack in a finite medium is considered.

Stress Intensity Factors and Kink Angle of a Crack Interacting with a Circular Inclusion Under Remote Mechanical and Thermal Loadings

  • Lee, Saebom;Park, Seung-Tae;Earmme, Youn-Young;Chung, Dae-Youl
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1120-1132
    • /
    • 2003
  • A problem of a circular elastic inhomogeneity interacting with a crack under uniform loadings (mechanical tension and heat flux at infinity) is solved. The singular. integral equations for edge and temperature dislocation distribution functions are constructed and solved numeric-ally, to obtain the stress intensity factors. The effects of the material property ratio on the stress intensity factor (SIF) are investigated. The computed SIFs are used to predict the kink angle of the crack when the crack grows.