• Title/Summary/Keyword: matching template

Search Result 392, Processing Time 0.026 seconds

The Edge Selection Algorithm for Efficient Optical Image Matching (효율적인 광학 영상 정합을 위한 에지 선택 알고리즘)

  • Yang, Han-Jin;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.264-268
    • /
    • 2010
  • The purpose of this paper is to propose new techniques to match measured optical images by using the edge abstraction method and differentiation method based on image processing technology. To do this, we detect the matching template and non-matching template from each optical image. And then, we detect the edge parts of the overlaped image from comer edge abstraction method and remove noise image. At last, these data are related to applied first-order derivative operator. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

The Verification of Image Merging for Lumber Scanning System (제재목 화상입력시스템의 화상병합 성능 검증)

  • Kim, Byung Nam;Kim, Kwang Mo;Shim, Kug-Bo;Lee, Hyoung Woo;Shim, Sang-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.556-565
    • /
    • 2009
  • Automated visual grading system of lumber needs correct input image. In order to create a correct image of domestic red pine lumber 3.6 m long feeding on a conveyer, part images were captured using area sensor and template matching algorithm was applied to merge part images. Two kinds of template matching algorithms and six kinds of template sizes were adopted in this operation. Feature extracted method appeared to have more excellent image merging performance than fixed template method. Error length was attributed to a decline of similarity related by difference of partial brightness on a part image, specific pattern and template size. The mismatch part was repetitively generated at the long grain. The best size of template for image merging was $100{\times}100$ pixels. In a further study, assignment of exact template size, preprocessing of image merging for reduction of brightness difference will be needed to improve image merging.

Jammer Identification Technique based on a Template Matching Method

  • Jin, Mi Hyun;Yeo, Sang-Rae;Choi, Heon Ho;Park, Chansik;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.2
    • /
    • pp.45-51
    • /
    • 2014
  • GNSS has the disadvantage of being vulnerable to jamming, and thus, the necessity of jamming countermeasure techniques has gradually increased. Jamming countermeasure techniques can be divided into an anti-jamming technique and a jammer localization technique. Depending on the type of a jammer, applicable techniques and performance vary significantly. Using an appropriate jamming countermeasure technique, the effect of jamming on a GNSS receiver can be attenuated, and prompt action is enabled when estimating the location of a jammer. However, if an inappropriate jamming countermeasure technique is used, a GNSS receiver may not operate in the worst case. Therefore, jammer identification is a technique that is essential for proper action. In this study, a technique that identifies a jammer based on template matching was proposed. For template matching, analysis of a received jamming signal is required; and the signal analysis was performed using a spectral correlation function. Based on a simulation, it was shown that the proposed identification of jamming signals was possible at various JNR.

Analysis of the Effect of the Grid Spacing on the Application of the Location Template Matching Method Using a Cantilever Beam (외팔 보를 이용한 Location Template Matching 방법을 적용함에 있어서 격자간격의 영향 분석)

  • Shin, Kihong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.609-615
    • /
    • 2016
  • Measuring similarity between two signals is a key element of the location template matching (LTM) method which is one of impact source localization technique. As a measure of similarity, the correlation coefficient is most widely used, and the group delay based method is recently proposed to improve the accuracy of finding the impact source. In practice, the LTM method assumes that the similarity between two signals decreases as the distance between two corresponding impact points increases, where the distance between two neighboring impact points defines the grid spacing. In this paper, it is shown that this assumption is not always true but the correlation coefficients fluctuate forming a main robe and many side robes as the distance between two neighboring impact points increases. On the other hand, the standard deviation of group delay sharply increases with a small increase of the grid spacing. These are demonstrated by using a simple cantilever beam. Based on these findings, an optimal way of implementing the LTM method may be suggested by combining the correlation coefficient and the group delay based approaches.

Image Tracking Algorithm using Template Matching and PSNF-m

  • Bae, Jong-Sue;Song, Taek-Lyul
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.413-423
    • /
    • 2008
  • The template matching method is used as a simple method to track objects or patterns that we want to search for in the input image data from image sensors. It recognizes a segment with the highest correlation as a target. The concept of this method is similar to that of SNF (Strongest Neighbor Filter) that regards the measurement with the highest signal intensity as target-originated among other measurements. The SNF assumes that the strongest neighbor (SN) measurement in the validation gate originates from the target of interest and the SNF utilizes the SN in the update step of a standard Kalman filter (SKF). The SNF is widely used along with the nearest neighbor filter (NNF), due to computational simplicity in spite of its inconsistency of handling the SN as if it is the true target. Probabilistic Strongest Neighbor Filter for m validated measurements (PSNF-m) accounts for the probability that the SN in the validation gate originates from the target while the SNF assumes at any time that the SN measurement is target-originated. It is known that the PSNF-m is superior to the SNF in performance at a cost of increased computational load. In this paper, we suggest an image tracking algorithm that combines the template matching and the PSNF-m to estimate the states of a tracked target. Computer simulation results are included to demonstrate the performance of the proposed algorithm in comparison with other algorithms.

The Vehicle Classification Using Chamfer Matching and the Vehicle Contour (차량의 윤곽선과 Chamfer Matching을 이용한 차량의 형태 분류)

  • Nam, Jin-Woo;Dewi, Primastuti;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.193-196
    • /
    • 2010
  • In this paper, we propose a method to classify the types of vehicle as full, medium, or small size. The proposed method is composed of three steps. First, after obtaining vehicle contour from template candidate image, edge distance template is created by distance transform of the vehicle's contour. Second, the vehicle type of input image is classified as the type of template which has minimal edge distance with input image. The edge distance value means the measurement of distance between input image and template at each pixel which is part of vehicle contour. Experimental results demonstrate that our method presented a good performance of 80% about test images.

  • PDF

Road Centerline Tracking From High Resolution Satellite Imagery By Least Squares Templates Matching

  • Park, Seung-Ran;Kim, Tae-Jung;Jeong, Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.34-39
    • /
    • 2002
  • Road information is very important for topographic mapping, transportation application, urban planning and other related application fields. Therefore, automatic detection of road networks from spatial imagery, such as aerial photos and satellite imagery can play a central role in road information acquisition. In this paper, we use least squares correlation matching alone for road center tracking and show that it works. We assumed that (bright) road centerlines would be visible in the image. We further assumed that within a same road segment, there would be only small differences in brightness values. This algorithm works by defining a template around a user-given input point, which shall lie on a road centerline, and then by matching the template against the image along the orientation of the road under consideration. Once matching succeeds, new match proceeds by shifting a matched target window further along road orientation at the target window. By repeating the process above, we obtain a series of points, which lie on a road centerline successively. A 1m resolution IKONOS images over Seoul and Daejeon were used for tests. The results showed that this algorithm could extract road centerlines in any orientation and help in fast and exact he ad-up digitization/vectorization of cartographic images.

  • PDF

Bone Loss Detection in Dental Radiography by Domain Knowledge Based Multi-template (지식기반 다중 템플릿을 이용한 치과용 디지털 X-ray 영상에서의 미세변화 검출에 관한 연구)

  • Ahn, Yon-Hak;Chae, Ok-Sam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.70-80
    • /
    • 2010
  • This study proposes the algorithm to automate image alignment and detect marginal bone destructions, based on subtraction radiography for dental radiographic images necessary for dental PACS, which hasn't been covered by related literatures. The proposed algorithm enables a quick and precise detection of marginal bone destructions around teeth including implant through the knowlege-based multi-template matching in reference to ROI(Region Of Interest) obtained from applicable teeth using information about their geometric forms to solve problems single-template matching is exposed to. Actually, the test showed that it was possible not only to quickly and precisely detect marginal bone destructions around teeth, but also to get more objective and quantitative results through the algorithm.

Detection of Pupil using Template Matching Based on Genetic Algorithm in Facial Images (얼굴 영상에서 유전자 알고리즘 기반 형판정합을 이용한 눈동자 검출)

  • Lee, Chan-Hee;Jang, Kyung-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1429-1436
    • /
    • 2009
  • In this paper, we propose a robust eye detection method using template matching based on genetic algorithm in the single facial image. The previous works for detecting pupil using genetic algorithm had a problem that the detection accuracy is influnced much by the initial population for it's random value. Therefore, their detection result is not consistent. In order to overcome this point we extract local minima in the facial image and generate initial populations using ones that have high fitness with a template. Each chromosome consists of geometrical informations for the template image. Eye position is detected by template matching. Experiment results verify that the proposed eye detection method improve the precision rate and high accuracy in the single facial image.

Pulmonary Nodule Registration using Template Matching in Serial CT Scans (연속 CT 영상에서 템플릿 매칭을 이용한 폐결절 정합)

  • Jo, Hyun-Hee;Hong, He-Len
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.8
    • /
    • pp.623-632
    • /
    • 2009
  • In this paper, we propose a pulmonary nodule registration for the tracking of lung nodules in sequential CT scans. Our method consists of following five steps. First, a translational mismatch is corrected by aligning the center of optimal bounding volumes including each segmented lung. Second, coronal maximum intensity projection(MIP) images including a rib structure which has the highest intensity region in baseline and follow-up CT series are generated. Third, rigid transformations are optimized by normalized average density differences between coronal MIP images. Forth, corresponding nodule candidates are defined by Euclidean distance measure after rigid registration. Finally, template matching is performed between the nodule template in baseline CT image and the search volume in follow-up CT image for the nodule matching. To evaluate the result of our method, we performed the visual inspection, accuracy and processing time. The experimental results show that nodules in serial CT scans can be rapidly and correctly registered by coronal MIP-based rigid registration and local template matching.