• Title/Summary/Keyword: matching points

Search Result 711, Processing Time 0.025 seconds

An algorithm for pattern recognition of multichannel ECG signals using AI (AI기법을 이용한 멀티채널 심전도신호의 패턴인식 알고리즘)

  • 신건수;이병채;황선철;이명호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.575-579
    • /
    • 1990
  • This paper describes an algorithm that can efficiently analyze the multichannel ECG signal using the frame. The input is a set of significant features (points) which have been extracted from an original sampled signal by using the split-and-merge algorithm. A signal from each channel can be hierarchical ADN/OR graph on the basis of the priori knowledge for ECG signal. The search mechanisms with some heuristics and the mixed paradigms of data-driven hypothesis formation are used as the major control mechanisms. The mutual relations among features are also considered by evaluating a score based on the relational spectrum. For recognition of morphologies corresponding to OR nodes, an hypothesis modification strategy is used. Other techniques such as instance, priority update of prototypes, and template matching facility are also used. This algorithm exactly recognized the primary points and supporting points from the multichannel ECG signals.

  • PDF

Comparisons of Various DEM Interpolation Techniques

  • Kim, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.163-168
    • /
    • 1998
  • Extracting a Digital Elevation Model (DEM) from spaceborne imagery is important for cartographic applications of remote sensing data. The procedure for such DEM generation can be divided into stereo matching, sensor modelling and DEM interpolation. Among these, DEM interpolation contributes significantly to the completeness and accuracy of a DEM and, yet, this technique is often considered "trivial". However, na\ulcornere DEM interpolation may result in a less accurate and sometimes meaningless DEM. This paper reports the performance analysis of various DEM interpolation techniques. Using a manually derived DEM as reference, a number of sample points were created randomly. Different interpolation techniques were applied to the sample points to generate DEMs. The performance of interpolation was assessed by the accuracy of such DEMs. The results showed that kriging gave the best results at all times whereas nearest neighborhood interpolation provided a fast solution with moderate accuracy when sample points were large enough.

  • PDF

Automatic Registration of High Resolution Satellite Images using Local Properties of Control Points (지역적 CPs 특성에 기반한 고해상도영상의 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Han, Dong-Yeob;Kim, Yong-Il
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.221-224
    • /
    • 2010
  • When the image registration methods which were generally used to the low medium resolution satellite images is applied to the high spatial resolution images, some matching errors or limitations might be occurred because of the local distortions in the images. This paper, therefore, proposed the automatic image-to-image registration of high resolution satellite images using local properties of control points to improve the registration result.

  • PDF

Study on a Robust Object Tracking Algorithm Based on Improved SURF Method with CamShift

  • Ahn, Hyochang;Shin, In-Kyoung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 2018
  • Recently, surveillance systems are widely used, and one of the key technologies in this surveillance system is to recognize and track objects. In order to track a moving object robustly and efficiently in a complex environment, it is necessary to extract the feature points in the interesting object and to track the object using the feature points. In this paper, we propose a method to track interesting objects in real time by eliminating unnecessary information from objects, generating feature point descriptors using only key feature points, and reducing computational complexity for object recognition. Experimental results show that the proposed method is faster and more robust than conventional methods, and can accurately track objects in various environments.

A study on correspondence problem of stereo vision system using self-organized neural network

  • Cho, Y.B.;Gweon, D.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.170-179
    • /
    • 1993
  • In this study, self-organized neural network is used to solve the vorrespondence problem of the axial stereo image. Edge points are extracted from a pair of stereo images and then the edge points of rear image are assined to the output nodes of neural network. In the matching process, the two input nodes of neural networks are supplied with the coordi- nates of the edge point selected randomly from the front image. This input data activate optimal output node and its neighbor nodes whose coordinates are thought to be correspondence point for the present input data, and then their weights are allowed to updated. After several iterations of updating, the weights whose coordinates represent rear edge point are converged to the coordinates of the correspondence points in the front image. Because of the feature map properties of self-organized neural network, noise-free and smoothed depth data can be achieved.

  • PDF

Local Stereo Matching Method based on Improved Matching Cost and Disparity Map Adjustment (개선된 정합 비용 및 시차 지도 재생성 기반 지역적 스테레오 정합 기법)

  • Kang, Hyun Ryun;Yun, In Yong;Kim, Joong Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.65-73
    • /
    • 2017
  • In this paper, we propose a stereo matching method to improve the image quality at the hole and the disparity discontinuity regions. The stereo matching method extracts disparity map finding corresponding points between stereo image pair. However conventional stereo matching methods have a problem about the tradeoff between accuracy and precision with respect to the length of the baseline of the stereo image pair. In addition, there are hole and disparity discontinuity regions which are caused by textureless regions and occlusion regions of the stereo image pair. The proposed method extracts initial disparity map improved at disparity discontinuity and miss-matched regions using modified AD-Census-Gradient method and adaptive weighted cost aggregation. And then we conduct the disparity map refinement to improve at miss-matched regions, while also improving the accuracy of the image. Experimental results demonstrate that the proposed method produces high-quality disparity maps by successfully improving miss-matching regions and accuracy while maintaining matching performance compared to existing methods which produce disparity maps with high matching performance. And the matching performance is increased about 3.22(%) compared to latest stereo matching methods in case of test images which have high error ratio.

Generation of Feature Map for Improving Localization of Mobile Robot based on Stereo Camera (스테레오 카메라 기반 모바일 로봇의 위치 추정 향상을 위한 특징맵 생성)

  • Kim, Eun-Kyeong;Kim, Sung-Shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2020
  • This paper proposes the method for improving the localization accuracy of the mobile robot based on the stereo camera. To restore the position information from stereo images obtained by the stereo camera, the corresponding point which corresponds to one pixel on the left image should be found on the right image. For this, there is the general method to search for corresponding point by calculating the similarity of pixel with pixels on the epipolar line. However, there are some disadvantages because all pixels on the epipolar line should be calculated and the similarity is calculated by only pixel value like RGB color space. To make up for this weak point, this paper implements the method to search for the corresponding point simply by calculating the gap of x-coordinate when the feature points, which are extracted by feature extraction and matched by feature matching method, are a pair and located on the same y-coordinate on the left/right image. In addition, the proposed method tries to preserve the number of feature points as much as possible by finding the corresponding points through the conventional algorithm in case of unmatched features. Because the number of the feature points has effect on the accuracy of the localization. The position of the mobile robot is compensated based on 3-D coordinates of the features which are restored by the feature points and corresponding points. As experimental results, by the proposed method, the number of the feature points are increased for compensating the position and the position of the mobile robot can be compensated more than only feature extraction.

A Hybrid Approach of Efficient Facial Feature Detection and Tracking for Real-time Face Direction Estimation (실시간 얼굴 방향성 추정을 위한 효율적인 얼굴 특성 검출과 추적의 결합방법)

  • Kim, Woonggi;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.117-124
    • /
    • 2013
  • In this paper, we present a new method which efficiently estimates a face direction from a sequences of input video images in real time fashion. For this work, the proposed method performs detecting the facial region and major facial features such as both eyes, nose and mouth by using the Haar-like feature, which is relatively not sensitive against light variation, from the detected facial area. Then, it becomes able to track the feature points from every frame using optical flow in real time fashion, and determine the direction of the face based on the feature points tracked. Further, in order to prevent the erroneously recognizing the false positions of the facial features when if the coordinates of the features are lost during the tracking by using optical flow, the proposed method determines the validity of locations of the facial features using the template matching of detected facial features in real time. Depending on the correlation rate of re-considering the detection of the features by the template matching, the face direction estimation process is divided into detecting the facial features again or tracking features while determining the direction of the face. The template matching initially saves the location information of 4 facial features such as the left and right eye, the end of nose and mouse in facial feature detection phase and reevaluated these information when the similarity measure between the stored information and the traced facial information by optical flow is exceed a certain level of threshold by detecting the new facial features from the input image. The proposed approach automatically combines the phase of detecting facial features and the phase of tracking features reciprocally and enables to estimate face pose stably in a real-time fashion. From the experiment, we can prove that the proposed method efficiently estimates face direction.

Matching Algorithms using the Union and Division (결합과 분배를 이용한 정합 알고리즘)

  • 박종민;조범준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1102-1107
    • /
    • 2004
  • Fingerprint Recognition System is made up of Off-line treatment and On-line treatment; the one is registering all the information of there trieving features which are retrieved in the digitalized fingerprint getting out of the analog fingerprint through the fingerprint acquisition device and the other is the treatment making the decision whether the users are approved to be accessed to the system or not with matching them with the fingerprint features which are retrieved and database from the input fingerprint when the users are approaching the system to use. In matching between On-line and Off-line treatment, the most important thing is which features we are going to use as the standard. Therefore, we have been using “Delta” and “Core” as this standard until now, but there might have been some deficits not to exist in every person when we set them up as the standards. In order to handle the users who do not have those features, we are still using the matching method which enables us to make up of the spanning tree or the triangulation with the relations of the spanned feature. However, there are some overheads of the time on these methods and it is not sure whether they make the correct matching or not. Therefore, I would like to represent the more correct matching algorism in this paper which has not only better matching rate but also lower mismatching rate compared to the present matching algorism by selecting the line segment connecting two minutiae on the same ridge and furrow structures as the reference point.

A Multiple Vehicle Object Detection Algorithm Using Feature Point Matching (특징점 매칭을 이용한 다중 차량 객체 검출 알고리즘)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.123-128
    • /
    • 2018
  • In this paper, we propose a multi-vehicle object detection algorithm using feature point matching that tracks efficient vehicle objects. The proposed algorithm extracts the feature points of the vehicle using the FAST algorithm for efficient vehicle object tracking. And True if the feature points are included in the image segmented into the 5X5 region. If the feature point is not included, it is processed as False and the corresponding area is blacked to remove unnecessary object information excluding the vehicle object. Then, the post processed area is set as the maximum search window size of the vehicle. And A minimum search window using the outermost feature points of the vehicle is set. By using the set search window, we compensate the disadvantages of the search window size of mean-shift algorithm and track vehicle object. In order to evaluate the performance of the proposed method, SIFT and SURF algorithms are compared and tested. The result is about four times faster than the SIFT algorithm. And it has the advantage of detecting more efficiently than the process of SUFR algorithm.