• Title/Summary/Keyword: master mold

Search Result 89, Processing Time 0.041 seconds

Variations of Form Accuracy in the Process of Metal Cast Prototyping using Rapid prototype, Vacuum casting and Ceramic Mold (쾌속조형과 진공주형 및 세라믹 몰드를 이용한 금속 주조 시제품 제작 공정에서의 형상정밀도 변화)

  • Kim, Gi-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.131-137
    • /
    • 2007
  • In metal casting process, it is very difficult to predict the form accuracy of cast part and reduce repeatability error. In this study, the variations of form accuracy were measured in the process of metal cast prototyping, where RP part is manufactured from CAD model in the first, and then, wax part is cast in the vacuum environment using the RP part as master model, and finally metal prototype is cast using ceramic mold and the wax part as pattern. To investigate the variations of form accuracy, the averages and standard deviations of error distribution of the parts measured by 3D scanner were compared. It was observed that the biggest shrinkage is generated during the extraction of wax part in the second step and the biggest deterioration of form accuracy is generated during the metal part casting in the last step.

Fabrication of nano pattern using the injection molding (사출성형을 이용한 미세 패턴 성형)

  • Lee, Kwan-Hee;Yoo, Yeong-Eun;Kim, Sun-Kyoung;Kim, Tae-Hoon;Je, Tae-Jin;Choi, Doo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1532-1536
    • /
    • 2007
  • A plastic substrate with tiny rectangular pillars less than 100nm is injection molded to study pattern replication in injection molding. The size of the substrate is 50mm ${\times}$ 50mm and 1mm thick. The substrate has 9 patterned areas of which size is 2mm ${\times}$ 2mm respectively. The lengths of the pillars are 50nm, 100nm, 150nm and 200nm and the width and height are 50nm and about 100nm respectively. A pattern master is fabricated by e-beam writing using positive PR(photo resist) and then a nickel stamper replicated from the PR master by nickel electro-plating. Cr is deposited on the PR pattern master before nickel electro-plating as a conducting layer. Using this nickel stamper, several injection molding experiments are done to investigate effects of the injection molding parameters such as mold temperature, injection rate, packing pressure or pattern location on the replication of the patterns under 100nm.

  • PDF

Fabrication of 3D Metallic Molds for Multi-replication of Microstructures (극미세 3 차원 형상복제를 위한 금속몰드 제작에 관한 연구)

  • Bae, Kong-Myung;Ko, Jong-Soo;Park, Sang-Hu;Lim, Tae-Woo;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.119-125
    • /
    • 2009
  • Fabrication of a three-dimensional (3D) metallic mold for multi-production of a microstructure was studied to settle the problem of long processing time in 3D microfabrication. To date, complicated 3D microstructures including 3D photonic crystals, 3D microlens array, 3D filter for microfludics, and something else were created successfully using the two-photon polymerization (TPP) which was considered as paving the way to fabricate a real 3D shape in nano/microscale. However, for those fabrications, much processing time and efforts were inevitably required. To solve this issue, a simple and effective way was proposed in this paper; 3D master patterns were prepared using TPP, and then counter-shaped Ni molds were fabricated by electroforming process. By using these molds, 3D microstructures can be reproduced with short-processing time and low-effort comparing to the conventional approach, TPP We report some parameters to fabricate a metallic mold precisely.

Low-Cost Fabrication of Multimode Optical Waveguides for Optical Interconnects (광 연결을 위한 저가형 멀티모드 광 도파로의 제작)

  • 이병탁;권민석;윤준보;신상영
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.315-318
    • /
    • 1999
  • As low-cost optical waveguides of optical interconnects, we fabricate multimode optical waveguides using a molding process The core size of a optical waveguide is 47 ${\mu}{\textrm}{m}$ $\times$ 41 ${\mu}{\textrm}{m}$. We use the photoresist AZ9260 as a master, polydimethyl-siloxane (PDMS) as a mold. In transferring process to polymeric material, we employ a modified micro-transfer molding process. All processes are simple and low-cost.

  • PDF

A Study of Optimum Molding Condition of Aspheric Glass Lens(I) ; Annealing Condition Effect (비구면 Glass렌즈 최적 성형조건 연구(I) ; 서냉조건효과)

  • Cha, Du-Hwan;Kim, Hyeon-Uk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.07a
    • /
    • pp.197-198
    • /
    • 2006
  • 본 연구에서 개발하는 성형렌즈는 그림1과 같이 한쪽 면이 비구면인 평볼록 형상이다. Glass렌즈의 고온압축성형을 위해서는 초정밀 가공기술로 제작된 성형Mold가 필요하며, Mold재질에 따른 성형기술의 확립이 필수적이다. 또한, 성형Mold의 표면과 융착반응이 없는 Glass소재가 요구된다. 본 실험을 위한 성형Mold는 코발트(Co) 함량 0.5 %의 초경합금(WC; 일본, Everloy社, 002K)을 초정밀 연삭가공하여 제작하였다. Glass소재는 전이점(Transformation Point; Tg) $572\;^{\circ}C$,항복점(Yielding Point; At) $630\;^{\circ}C$의 열적 특성을 갖는 K-BK7(일본, Sumita社)을 사용하였으며, d선에서 굴절률 및 아베수는 각각 1.51633, 64.1이다. 비구면 Glass렌즈 성형은 GMP(Glass Molding Press; 일본, Sumitomo社, Nano Press-S)장비를 사용하여 성형온도 $625\;^{\circ}C$, 서냉온도 $550\;^{\circ}C$로 고정하고 성형압력를 200-800 N 범위에서 변화시켰다. 표 1에 성형변수로 사용한 서냉속도와 서냉전환온도 조건을 나타낸다. 표1과 같이 각 서냉조건별로5장의 렌즈를 성형 후 특성값이 평균치에 가까운 3장을 선별하여 그 특성을 비교하였다. 각 조건에 따른 성형렌즈의 형상정도(일본, Panasonic社, UA3P, 자유곡면형상측정기), 두께(일본, Mitutoyo社, MDC-25M, 마이크로메터), 굴절률(일본, Shimatus社, KPR-200, 정밀굴절률측정기) 및 MTF[해상도](독일, Trioptics社, Image Master HR, MTF-Field)를 측정하여 각각의 광학적 특성을 비교 평가하였다. 비구면 Glass렌즈 성형장비와 형상측정기를 그림 2, 3에 각각 나타낸다.

  • PDF

Fabrication of Plasmon Subwavelength Nanostructures for Nanoimprinting

  • Cho, Eun-Byurl;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.247-247
    • /
    • 2012
  • Plasmon subwavelength nanostructures enable the structurally modulated color due to the resonance conditions for the specific wavelength range of light with the nanoscale hole arrays on a metal layer. While the unique properties offered from a single layer of metal may open up the potential applications of integrated devices to displays and sensors, fabrication requirements in nanoscale, typically on the order of or smaller than the wavelength of light in a corresponding medium can limit the cost-effective implementation of the plasmonic nanostructures. Simpler nanoscale replication technologies based on the soft lithography or roll-to-roll nanoimprinting can introduce economically feasible manufacturing process for these devices. Such replication requires an optimal design of a master template to produce a stamp that can be applied for a roll-to-roll nanoimprinting. In this paper, a master mold with subwavelength nanostructures is fabricated and optimized using focused ion beam for the applications to nanoimprinting process. Au thin film layer is deposited by sputtering on a glass that serves as a dielectric substrate. Focused ion beam milling (FIB, JEOL JIB-4601F) is used to fabricate surface plasmon subwavelength nanostructures made of periodic hole arrays. The light spectrum of the fabricated nanostructures is characterized by using UV-Vis-NIR spectrophotometer (Agilent, Cary 5000) and the surface morphology is measured by using atomic force microscope (AFM, Park System XE-100) and scanning electron microscope (SEM, JEOL JSM-7100F). Relationship between the parameters of the hole arrays and the corresponding spectral characteristics and their potential applications are also discussed.

  • PDF

Fabrication of Metallic Nano-Filter Using UV-Imprinting Process (UV 임프린팅 공정을 이용한 금속막 필터제작)

  • Noh Cheol Yong;Lee Namseok;Lim Jiseok;Kim Seok-min;Kang Shinill
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.473-476
    • /
    • 2005
  • The demand of on-chip total analyzing system with MEMS (micro electro mechanical system) bio/chemical sensor is rapidly increasing. In on-chip total analyzing system, to detect the bio/chemical products with submicron feature size, a filtration system with nano-filter is required. One of the conventional methods to fabricate nano-filter is to use direct patterning or RIE (reactive ion etching). However, those procedures are very costly and are not suitable fur mass production. In this study, we suggested new fabrication method for a nano-filter based on replication process, which is simple and low cost process. After the Si master was fabricated by laser interference lithography and reactive ion etching process, the polymeric mold was replicated by UV-imprint process. Metallic nano-filter was fabricated after removing the polymeric part of metal deposited polymeric mold. Finally, our fabrication method was applied to metallic nano-filter with $1{\mu}m$ pitch size and $0.4{\mu}m$ hole size for bacteria sensor application.

Sol-gel법 및 Direct Patterning을 통해 Moth-eye 구조가 패터닝된 AZO 박막의 제작

  • Kim, Jin-Seung;Byeon, Gyeong-Jae;Park, Hyeong-Won;Jo, Jung-Yeon;Lee, -Heon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.62.1-62.1
    • /
    • 2011
  • 현재 상용화된 LED 또는 태양전지 등의 투명전극(TCO, transparent couducting oxide)재료로 높은 전기전도도와 광투과도를 갖는 ITO (Indium Tin Oxide)가 많이 채택되고 있다. 그러나 이에 사용되는 Indium의 단가가 높다는 문제점이 있어 이를 대체하기 위한 물질의 연구가 많이 이루어지고 있다. 특히 Aluminum을 doping한 ZnO (AZO)는 우수한 전기적, 광학적 특성 등으로 인해 ITO를 대체할 차세대 TCO 물질로 각광받고 있다. 본 연구에서는 sol-gel법을 및 direct patterning법을 이용하여 moth-eye 패턴을 포함하는 AZO 박막을 제작하였다. AZO sol을 제작하기 위하여 2-methoxyethanol, zinc acetate dihydrate 및 doping source로 aluminum nitrate nonahydrate를 사용하였다. 또한 광추출 향상 효과를 갖는 moth-eye 구조의 master stamp를 Polydimethyl siloxane(PDMS)를 이용하여 역상 moth-eye 구조의 mold를 복제하였으며, 이 복제된 mold와 제작된 AZO sol을 이용한 direct patterning법을 통해 나노급 moth-eye 구조를 갖는 AZO 투명전극층을 형성하였다. 제작된 moth-eye 구조를 갖는 AZO 투명전극층의 전기적 특성 평가를 위해, 4-point probe 측정 및 Hall measurement를 시행하였으며, 광학적 특성을 확인하기 위하여 UV-Visable spectrometer를 이용하여 투과도를 측정하였다. 본 연구를 통해 현재 상용화된 광전자 소자에 사용되고 있는 ITO 투명전극을 대체할 차세대 투명전극으로써 AZO 박막의 가능성을 확인하였다.

  • PDF

Injection Molding of Hydrophobic Plastic Plates (사출 성형에 의한 소수성 플라스틱 기판 제작)

  • Yoo, Y.E.;Lee, K.H.;Yoon, J.S.;Choi, D.S.;Kim, S.K.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1563-1565
    • /
    • 2008
  • Hydrophobic plastic plates employing nano surface features are injection molded using thermoplastic materials. A variotherm molding process is devised for filling the nano pores and releasing the molded nano features from the master. The size of the molded nano surface features are about 100nm in diameter and 200nm in height. The size of the molded plate is about 30mm x 30mm and the thickness is 1mm. As molding materials, Polypropylene, PMMA, COC and PC are employed, which are all typical commodity thermoplastic materials. The mold temperature(stamper temperature) is investigated as a major processing parameter for molding high aspect ratio nano surface features. Almost fully molded nano features are fabricated above a certain level of mold temperature depends on the employing material. The contact angles on the injection molded plates are measured to estimate the hydrophobicity and found to have higher contact angle up to 180% compared to the blank plate with no surface features.

  • PDF

직접 Printing 기술을 이용한 hydrogen silsesquioxane (HSQ) 아날로그 나노 패턴 제작 기술에 대한 연구

  • Yang, Gi-Yeon;O, Sang-Cheol;Lee, Heon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.30.1-30.1
    • /
    • 2010
  • Hydrogen silsesquioxane (HSQ)는 spin-on glass (SOG)의 일종으로 spin-coating이 가능하며 $400^{\circ}C$ 이상의 고온에서의 어닐링을 통해 silica로 변환되는 물질이다. 이 물질은 가시광선 영역에서 95% 이상의 높은 투과도를 나타내며 산화물로의 변환 공정이 간단하며 표면 개질이 용이하기 때문에 나노 바이오, 반도체, 광전자 소자 등의 다양한 분야로의 적용이 기대되는 물질이다. 최근 나노 기술의 발전에 따라 다양한 나노 구조물을 이용하여 소자들의 효율을 향상시키는 연구가 활발하게 진행되고 있다. 따라서 HSQ를 이용하는 소자의 효율을 높이기 위해서는 쉽고 간단하면서 생산성이 높은 HSQ 나노 구조물 제작 기술에 대한 연구가 필요하다. 현재 개발된 대면적 HSQ 나노 구조물 제작 기술로는 e-beam lithography, x-ray lithography, room temperature nanoimprint lithography 등이 있다. 하지만 이와 같은 나노 패터닝 기술들은 생산성이 낮거나 공정이 복잡한 단점이 있다. 본 연구에서는 poly(dimethylsiloxane) (PDMS) mold를 이용한 직접 printing 기술을 통해 HSQ 나노 구조물을 제작하는 기술을 개발하였다. 이 기술은 대면적에 간단한 기술로 HSQ 나노 패턴을 제작할 수 있으며 master mold의 패턴이 그대로 HSQ layer로 전사되기 때문에 제작이 까다로운 아날로그 패턴도 손쉽게 제작할 수 있는 장점을 가지고 있다. 따라서 이와 같은 HSQ 직접 printing 기술을 이용하여 HSQ 아날로그 나노 패턴을 제작하고 이의 응용기술에 대한 연구를 진행하였다.

  • PDF