• 제목/요약/키워드: master metallic nano-stamper

검색결과 5건 처리시간 0.021초

나노패턴 성형을 위한 금속 나노 스탬퍼 제작 (Fabrication of metallic nano-stamper to replicate nanoscale patterns)

  • 김영규;이동철;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.481-484
    • /
    • 2003
  • In this study, we fabricated the master metallic nano-stamper with nano pillar patterns to apply replication processes which is adequate for mass production. Master nano patterns with various hole diameters between 300 nm and 1000 nm was fabricated by e-beam lithography. After the seed layer was deposited on the master nano patterns using e-beam evaporation, the nickel was electroformed. In each step, the shape and surface roughness of their patterns were analyzed using SEM and AFM.

  • PDF

고밀도 패턴드 미디어 성형에 관한 연구 (Replication of High Density Patterned Media)

  • 이남석;최용;강신일
    • 정보저장시스템학회논문집
    • /
    • 제1권2호
    • /
    • pp.192-196
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by E-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. The nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. In nano-injection molding process, since the solidified layer, generated during the polymer filling, deteriorates transcribability of nano patterns by preventing the polymer melt from filling the nano cavities, an injection-mold system was constructed to actively control the stamper surface temperature using MEMS heater and sensors. The replicated polymeric patterns using nano-injection molding process were as small as 50 nm in diameter, 150 nm in pitch, and 50 nm in depth. The replicated polymeric patterns can be applied to high density patterned media.

  • PDF

금속 나노 스탬퍼 점착방지막으로서의 자기조립 단분자막 특성 연구 (Study on Properties of Self-Assembled Monolayer as Anti-adhesion Layer on Metallic Nano Stamper)

  • 최성우;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.367-370
    • /
    • 2003
  • In this study, application of SAM (self-assembled monolayer) to nano replication process as an anti-adhesion layer was presented to reduce the surface energy between the nano mold and the replicated polymeric nano patterns. The electron beam lithography was used for master nano patterns and the electorforming process was used to fabricate the nickel nano stamper. Alkanethiol SAM as an anti-adhesion layer was deposited on metallic nano stamper using solution deposition method. To analyze wettability and adhesion force of SAM, contact angle and LFM (Lateral Force Microscopy) were measured at the actual processing temperature and pressure for the case of nano compression molding and at the actual UV dose for the case of nano UV molding. It was found that the surface energy due to SAM deposition on the nickel nano stamper markedly decreased and the quality of SAM on the nickel stamper maintained under the actual molding environments.

  • PDF

패턴드 미디어를 위한 나노 사출 성형 공정에 관한 연구 (Replication of Patterned Media Using Nano-injection Molding Process)

  • 이남석;최용;강신일
    • 소성∙가공
    • /
    • 제14권7호
    • /
    • pp.624-627
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by I-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. Finally, the nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. The replicated patterns using nano-injection molding process were as small as 50nm in diameter, 150nm in pitch, and 50nm in depth.

패턴드 미디어를 위한 나노 사출 성형 공정에 관한 연구 (Replication of Patterned Media Using Nano-injection Molding Process)

  • 이남석;최용;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.60-63
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by E-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. Finally, the nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. The replicated patterns using nano-injection molding process were as small as 50 nm in diameter, 150 nm in pitch, and 50 nm in depth.

  • PDF