• Title/Summary/Keyword: master device

Search Result 187, Processing Time 0.033 seconds

Effective Parent-Child Key Establishment Algorithm used ZigBee Sensor Network (ZigBee 센서네트워크에서 효율적인 Parent - Child 키 연결 알고리즘)

  • Seo, Dae-Youl;Kim, Jin-Chul;Kim, Kyoung-Mok;Oh, Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.10 s.352
    • /
    • pp.35-45
    • /
    • 2006
  • Coordinator is defining so that function as most trust center that is point in security in ZigBee Alliance. Because must do height connection with coordinator in device signing to PAN newly, coordinator has shortcoming that subordinate is revealed to danger directly to Centered and cattish device. When do height connection some device, do not become problem, but if network is huge, coordinator's subordinate shall increase as traffic quantity which happen in coordinator increases. Also, in ZigBee security to link network kina of transmission and mutually certification in ZigBee Alliance standard include, but I do not provide method to deliver master key in each node safely. Because process that transmit master key passes through channel that do not secure, master key has shortcoming that is revealed directly. In this paper, I suggested Parent-Child key establishment algorithm to solve these problem. Proposed algorithm consists of two structures. Master key establishment algorithm and device that sign to PAN newly that can use one-way Hash chain and transmit master key safety are consisted of Parent-Child network key establishment algorithm that do child node and parent node key establishment as can do key establishment efficiently. Method that device proposes in case method that propose in case have master key establishment time was shown better performance $200{\sim}1300ms$ than existing method, and device does not have master key than existing method height connect time about $400{\sim}500ms$ better performance see.

Design of Remote Manipulator Control System using PHANToM Device (PHANToM Device 를 이용한 다관절 로봇의 원격제어 시스템 설계)

  • 김현상;김미경;강희준;서영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.241-245
    • /
    • 2004
  • This paper shows the development of remote control system for manipulators which consists of PHANToM Device as a master, Samsung FARA robot as a slave and TCP/IP based LAN for their Communication. This work includes the motion mapping between the master and the slave, Generation of virtual viscosity force preventing operator s unwilled action and 3D remote control simulators for the stable operation of the remote control system, etc. The remote control implementation has been performed and the results shows that the developed system can allow the operator to effectively control the manipulator.

  • PDF

Design and Implementation of Tele-operation system based on the Haptic Interface

  • Lee, Jong-Bae;Lim, Joon-Hong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.161-165
    • /
    • 2003
  • In this paper, we investigate the issues on the design and implementation of tele-operation system based on the haptic interface. Here, the 3-DOF haptic device and the X-Y-Z stage are employed as master controller and slave system respectively. For this master-slave system, the force feedback algorithm, the modeling of virtual environments and the control method of X-Y-Z stage are presented. In this paper, internet network is used for data communication between master and slave. We construct virtual environment of the real convex surface from the force-feedback in controlling the X-Y-Z stage and measuring the force applied by the 3-DOF haptic device.

Anti-lost Device Design using Bluetooth4.1 (블루투스4.1 기반 소형 분실방지용 송수신회로 설계)

  • Chae, Gyoo-Soo
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.4
    • /
    • pp.25-30
    • /
    • 2016
  • This paper presents on the development of a compact anti-lost device requested recently. The proposed device consists of the master and slave modules based on Bluetooth4.1 technology. To implement a low-power characteristic, an algorithm has been also developed. The transmitting and receiving circuits are designed by using BoT CLE110 module supporting Bluetooth 4.1. The ATmega 328P-AU was used for the control and LP3874EMP was used as a linear regulator. Power consumption of the fabricated product in operating mode is only 10mAh and 35mAh for MCU operating state. Alarm operation distance is $10m{\pm}30%$, the effective radiated power is less than 10mW, the frequency band is designed to operate in the Bluetooth band with 26MHz bandwidth. And algorithms have been developed to extend the battery life. The size of the product was obtained as $45{\times}45{\times}15mm$ for master and $35{\times}35{\times}10mm$ fr slave. After the optimization process, it is expected to be commercialized as a wristwatch for anti-lost device.

Development of Master-slave System for Robot-assisted Remote Ultrasound Diagnosis (로봇 지원 원격 초음파 영상진단을 위한 마스터-슬레이브 시스템의 개발)

  • Seo, Joonho;Cho, Jang Ho;Kwon, Ohwon
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.395-401
    • /
    • 2017
  • In this paper, we introduce a robot-assisted medical diagnostic system that enables remote ultrasound (US) imaging to be applied to the conventional telemedicine, which has been possible only with interviewing or a visual exam. In particular, a master-slave robot system is developed that ultrasonic diagnosis specialist can control the position and orientation of US probe in the remote place. The slave robot is designed to be compact, lightweight, and hand-held so that it can easily transfer to the remote healthcare center. Moreover, 6-degree-of-freedom (DOF) probe motion is possible by the robot design based on Stewart platform. The master device is also based on a similar structure of the slave robot. To connect master and slave system in the wide area network (WAN) environment, a hardware CODEC was developed. In this paper, we introduce the detail of each component and the results of the recent experiments conducted in the remote sites by the developed robotic ultrasound imaging system.

Force feedback control using fuzzy logic controller (퍼지논리 제어기를 이용한 힘궤한 제어)

  • 신동목;서삼준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.486-489
    • /
    • 1996
  • The objective of this paper is to design a force feedback controller for bilateral control of a master-slave manipulator system. In a bilateral control system, the motion of the master device is followed by the slave one, while the force applied to the slave is reflected on the master. In this paper, a fuzzy logic controllers applied to the system. Using the fuzzy logic controller, the knowledge of the system dynamics is not needed. Simulations and experimental results show the performance of the proposed controller.

  • PDF

Dynamic Modeling and Repulsive Force Control of Medical Hpatic Master (의료용 햅틱 마스터의 동적 모델링과 힘 반향 제어)

  • Oh, Jong-Seok;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.284-290
    • /
    • 2012
  • In this research, a new type of haptic master device using electrorheological(ER) fluid for minimally invasive surgery(MIS) is devised and control performance of the proposed haptic master is evaluated. The proposed haptic master consists of ER bi-directional clutch/brake for 2 DOF rotational motion(X, Y) using gimbal structure and ER brake on the gripper for 1 DOF rotational motion (Z). Using Bingham characteristic of ER fluid and geometrical constraints, principal design variables of the haptic master are determined. Then, the generation of torque of the proposed master is experimentally evaluated as a function of applied field of voltage. A sliding mode controller which is robust to uncertainties is then designed and empirically realized. It has been demonstrated via experiment that the proposed haptic master associated with the controller can be effectively applied to MIS in real field conditions.

A Haptic Master-slave Robot System : Experimental Performance Evaluation for Medical Application (의료용 햅틱 마스터-슬레이브 로봇 시스템 : 실험적 성능 평가)

  • Oh, Jong-Seok;Shin, Won-Ki;Nguyen, Phuong-Bac;Uhm, Chang-Ho;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • In this work, 4-DOF ER haptic master is proposed and integrated with a slave robot for minimally invasive surgery(MIS). Using a controllable ER fluid, the haptic master can generate a repulsive force/torque with the 4-DOF motion. For realization of master-slave robot system, the motion command of the haptic master is realized by slave surgery robot. In order to follow the 4-DOF motion of the haptic master, novel mechanism of slave surgery robot with gimbal joint is devised. Accordingly, the haptic master-slave robot system is established by incorporating the slave robot with the haptic master device in which the desired repulsive force/torque and position are transferred to each other via wireless communications. In order to obtain the desired force/torque and position trajectories, tracking controllers for haptic master and slave robot are designed and implemented, respectively. It has been demonstrated that the desired effective torque tracking control performance is well achieved using the proposed haptic master-slave robot system.

A Haptic Master-Slave Robot System : Experimental Performance Evaluation for Medical Application (의료용 햅틱 마스터-슬레이브 로봇 시스템 : 실험적 성능 평가)

  • Oh, Jong-Seok;Shin, Won-Ki;Nguyen, Phuong-Bac;Uhm, Chang-Ho;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.421-427
    • /
    • 2012
  • In this work, 4 DOF ER haptic master is proposed and integrated with a slave robot for minimally invasive surgery (MIS). Using a controllable ER fluid, the haptic master can generate a repulsive force/torque with the 4-DOF motion. For realization of master-slave robot system, the motion command of the haptic master is realized by slave surgery robot. In order to follow the 4 DOF motion of the haptic master, novel mechanism of slave surgery robot with gimbal joint is devised. Accordingly, the haptic master-slave robot system is established by incorporating the slave robot with the haptic master device in which the desired repulsive force/torque and position are transferred to each other via wireless communications. In order to obtain the desired force/torque and position trajectories, tracking controllers for haptic master and slave robot are designed and implemented, respectively. It has been demonstrated that the desired effective torque tracking control performance is well achieved using the proposed haptic master-slave robot system.

  • PDF