• Title/Summary/Keyword: massive crystal

Search Result 15, Processing Time 0.022 seconds

Review: Magnetite Synthesis using NanoFermentation (Review: NanoFermentation을 이용한 자철석 합성연구)

  • Moon, Ji-Won;Roh, Yul;Phelps, Tommy J.
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.195-204
    • /
    • 2012
  • Biomineralization has been explored for geochemical cycles and microbial tolerance mechanisms to metal toxicity. Here, we are introducing NanoFermentation which enables economic, environmentally friendly, requiring low input energy, and scalable manufacturing of nano-dimensioned magnetite. We are also focusing on controlling factors of crystallite size which can determine superparamagnetism and ferrimagnetism. Controlling factors are such as microbial species, temperature, incubation time, medium composition, substituted elements and their concentration, precursor type, reaction volume, precursor concentration density and their combinations. Crystallite size distribution of biomagnetite depends on the balance between nuclei generation and crystal growth. Biomineralization will elucidate elemental cycles on earth crust and microbial ecology as well as it will be applied to material sciences and devices via massive production of nanomaterials.

Formation Process and Its Mechanism of the Sancheong Anorthosite Complex, Korea (산청 회장암복합체의 형성과정과 그 메커니즘)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.431-449
    • /
    • 2015
  • The study area is located in the western part of the Precambrian stock type of Sancheong anorthosite complex, the Jirisan province of the Yeongnam massif, in the southern part of the Korean Peninsula. We perform a detailed field geological investigation on the Sancheong anorthosite complex, and report the characteristics of lithofacies, occurrences, foliations, and research formation process and its mechanism of the Sancheong anorthosite complex. The Sancheong anorthosite complex is classified into massive and foliation types of Sancheong anorthosite (SA), Fe-Ti ore body (FTO), and mafic granulite (MG). Foliations are developed in the Sancheong anorthosite complex except the massif type of SA. The foliation type of SA, FTO, MG foliations are magmatic foliations which were formed in a not fully congealed state of SA from a result of the flow of FTO and MG melts and the kinematic interaction of SA blocks, and were continuously produced in the comagmatic differentiation. The Sancheong anorthosite complex is formed as the following sequence: the massive type of SA (a primary fractional crystallization of parental magmas under high pressure)${\rightarrow}$ the foliation type of SA [a secondary fractional crystallization of the plagioclase-rich crystal mushes (anorthositic magmas) primarily differentiated from parental magmas under low pressure]${\rightarrow}$the FTO (an injection by filter pressing of the residual mafic magmas in the last differentiation stage of anorthositic magmas into the not fully congealed SA)${\rightarrow}$the MG (a solidification of the finally residual mafic magmas). It indicates that the massive and foliation types of SA, the FTO, and the MG were not formed from the intrusion and differentiation of magmas which were different from each other in genesis and age but from the multiple fractionation and polybaric crystallization of the coeval and cogenetic magma.

Pulmonary Oxalosis Caused by Aspergillus Niger Infection (Aspergillus Niger 감염에 의한 폐옥살산염 1예)

  • Cho, Gye Jung;Ju, Jin Young;Park, Kyung Hwa;Choi, Yoo-Duk;Kim, Kyu Sik;Kim, Yu Il;Kim, Soo-Ok;Lim, Sung-Chul;Kim, Young-Chul;Park, Kyung-Ok;Nam, Jong-Hee;Yoon, Woong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.5
    • /
    • pp.516-521
    • /
    • 2003
  • The Aspergillus species produces metabolic products that play a significant role in the destructive processes in the lung. We experienced a case of chronic necrotizing pulmonary aspergillosis caused by an Aspergillus niger infection, which contained numerous calcium oxalate crystals in the necrotic lung tissue. A 46-year-old man, who had a history of pulmonary tuberculosis, presented with high fever, intermittent hemoptysis and pulmonary infiltrations with a cavity indicated by the chest radiograph. Despite being treated with several antibiotics and anti-tuberculosis regimens, the high fever continued. The sputum cultures yielded A. niger repeatedly, and intravenous amphotericin B was then introduced. The pathological specimen obtained by a transbronchial lung biopsy revealed numerous calcium oxalate crystals in a background of acute inflammatory exudates with no identification of the organism. Intravenous amphotericin B was continued at a total dose of 1600 mg, and at that time he was afebrile, although the intermittent hemoptysis continued. On the $63^{rd}$ hospital day, a massive hemoptysis (about 800 mL) developed, which could not be controlled despite embolizing the left bronchial artery. He died of respiratory failure the next day. It is believed that the oxalic acid produced by A. niger was the main cause of the patient's pulmonary injury and the ensuing massive hemoptysis.

Protective Effect of Astragalus polysaccharides on Liver Injury Induced by Several Different Chemotherapeutics in Mice

  • Liu, Wen;Gao, Fang-Fang;Li, Qun;Lv, Jia-Wei;Wang, Ying;Hu, Peng-Chao;Xiang, Qing-Ming;Wei, Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10413-10420
    • /
    • 2015
  • Side effects are an unavoidable consequence of chemotherapy drugs, during which liver injury often takes place. The current study was designed to investigate the protective effect of Astragalus polysaccharides (APS) against the hepatotoxicity induced by frequently-used chemical therapy agents, cyclophosphamide (CTX), docetaxel (DTX) and epirubicin (EPI)) in mice. Mice were divided into five groups, controls, low or high dose groups ($DTX_L$, $CTX_L$, $EPI_L$ or $DTX_H$, $CTX_H$, $EPI_H$), and low or high dose chemotherapeutics+APS groups ($DTX_L$+APS, $CTX_L$+APS, $EPI_L$+APS or $DTX_H$+APS, $CTX_H$+APS, $EPI_H$+APS). Controls were treated with equivalent normal saline for 28 days every other day; low or high dose group were intraperitoneal (i.p) injected with low or high doses of CTX, DTX and EPI for 28 days every other day; low or high dose chemotherapeutics+APS group were separately intraperitoneal (i.p) injected with chemotherapeutics for 28 days every other day and i.p with APS (100 mg/kg) for 7 days continually from the 22th to the 28th days. The body weight, serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), histopathological features, and ultrastructure morphological change of liver tissues, protein expression level of caspase-3 were estimated at different time points. With high dose treatment of DTX, CTX and EPI, weight gain was inhibited and serum levels of ALT and AST were significantly increased. Sections of liver tissue showed massive hepatotoxicity in $CTX_H$ group compared to the control group, including hepatic lobule disorder, granular and vacuolar degeneration and necrosis in hepatic cells. These changes were confirmed at ultrastructural level, including obvious pyknosis, heterochromatin aggregation, nuclear membrane resolution, and chondrosome crystal decrease. Western blotting revealed that the protein levels of caspase-3 increased in $CTX_H$ group. The low dose groups exhibited trivial hepatotoxicity. More interestingly, after 100 mg/kg APS, liver injury was redecued not only regarding serum transaminase activities (low or high dose chemotherapeutics+APS group), but also from pathological and ultrastructural changes and the protein levels of caspase-3 ($CTX_H$+APS group). In conclusion, DTX, CTX and EPI induce liver damage in a dose dependent manner, whereas APS exerted protective effects.

Mineralogical Characterization of the Chuncheon Nephrite: Mineral Facies, Mineral Chemistry and Pyribole Structure (춘천 연옥 광물의 광물학적 특성 : 광물상, 광물 화학 및 혼성 격자 구조)

  • Noh, Jin Hwan;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.57-79
    • /
    • 1993
  • Chuncheon nephrite, which was formed by the polymetasomatic alteration of dolomitic marble, can be classified into pale green, green, dark green, and grey types on the basis of their occurrence, mineralogical and textural characteristics. The nephrites consist obiefly of fibrous or hairlike(length/width ratio>10) cryptocrystalline(crystal width < $2{\mu}m$) tremolite, and include less amounts of micro-crystalline diopside, calcite, clinochlore, and sphene as impurities. The oriented and rather curved crystal aggregate, of nephritic tremolite are densely interwoven, resulting in a massive-fibrous texture which may explain the characteristic toughness of nephritic jade. The characteristic greenish color of the nephrite may be preferably related to Fe rather than Cr and Ni. However, the variation of color and tint in the Chuncheon nephrite also depends on the mineralogical and textural differences such as crystallinity, texture, and impurities. The chemical composition of the nephritic tremolite is not stoichiometric and rather dispersed especially in the abundances of Al, Mg, and Ca. Al content and Mg/Ca ratio for the nephritic tremolite are slightly increased with deepening in greenish color of the nephrite. Fe content in the nephritic tremolite is generally very low, but comparatively richer in the dark green nephrite. In nephritic tremolite, wide-chain pyriboles are irregularly intervened between normal double chains, forming a chain-width disorder. Most nephritic tremolites in the Chuncheon nephrite show various type of chain-width defects such as triple chain(jimthompsonite), quintuple chain (chesterite), or sometimes quadruple chain in HRTEM observations. The degree of chain-width disorder in the nephritic tremolite tends to increase with deepening in greenish color. Triple chain is the most common type, and quadruple chain is rarely observed only in the grey nephrite. The presence of pyribole structure in the nephritic tremolite is closely related to the increase of Al content and Mg/Ca ratio, a rather dispersive chemical composition, a decrease of relative intensity in (001) XRD reflection, and an increase in b axis dimension of unit cell. In addition, the degree and variation of chain-width disorder with nephrite types may support that an increase of metastability was formed by a rapid diffusion of Mg-rich fluid during the nephrite formation.

  • PDF