• 제목/요약/키워드: massive MIMO systems

검색결과 75건 처리시간 0.021초

A Neoteric Three-Dimensional Geometry-Based Stochastic Model for Massive MIMO Fading Channels in Subway Tunnels

  • Jiang, Yukang;Guo, Aihuang;Zou, Jinbai;Ai, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.2893-2907
    • /
    • 2019
  • Wireless mobile communication systems in subway tunnels have been widely researched these years, due to increased demand for the communication applications. As a result, an accurate model is essential to effectively evaluate the communication system performance. Thus, a neoteric three-dimensional (3D) geometry-based stochastic model (GBSM) is proposed for the massive multiple-input multiple-output (MIMO) fading channels in tunnel environment. Furthermore, the statistical properties of the channel such as space-time correlation, amplitude and phase probability density are analyzed and compared with those of the traditional two-dimensional (2D) model by numerical simulations. Finally, the ergodic capacity is investigated based on the proposed model. Numerical results show that the proposed model can describe the channel in tunnels more practically.

A Novel Adaptive Turbo Receiver for Large-Scale MIMO Communications

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Tsai, Bo-Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권7호
    • /
    • pp.2998-3017
    • /
    • 2018
  • Massive (large-scale) MIMO (multiple-input multiple-output) is one of the key technologies in next-generation wireless communication systems. This paper proposes a high-performance low-complexity turbo receiver for SC-FDMA (single-carrier frequency-division multiple access) based MMIMO (massive MIMO) systems. Because SC-FDMA technology has the desirable characteristics of OFDMA (orthogonal frequency division multiple access) and the low PAPR (peak-to-average power ratio) of SC transmission schemes, the 3GPP LTE (long-term evolution) has adopted it as the uplink transmission to meet the demand high data rate and low error rate performance. The complexity of computing will be increased greatly in base station with massive MIMO (MMIMO) system. In this paper, a low-complexity adaptive turbo equalization receiver based on normalized minimal symbol-error-rate for MMIMO SC-FDMA system is proposed. The proposed receiver is with low complexity than that of the conventional turbo MMSE (minimum mean square error) equalizer and is also with better bit error rate (BER) performance than that of the conventional adaptive turbo MMSE equalizer. Simulation results confirm the effectiveness of the proposed scheme.

부분 중첩 안테나 배열 구조를 갖는 대용량 MIMO 시스템을 위한 하이브리드 프리코더 설계 (Hybrid Precoder Design for Massive MIMO Systems with OSA structure)

  • 서방원
    • 한국정보통신학회논문지
    • /
    • 제25권2호
    • /
    • pp.274-279
    • /
    • 2021
  • 일반적인 대용량 안테나 시스템은 RF 체인의 개수가 매우 많기 때문에, 구현 비용 및 복잡도가 크게 증가하는 단점이 있다. 이러한 문제를 해결하기 위하여 하이브리드 프리코더 설계 기법들이 제안되었으나, RF 체인이 모든 안테나에 연결되기 때문에, 여전히 구현 비용과 복잡도가 너무 높은 상태이다. 본 논문에서는 부분 중첩 안테나 구조를 갖는 대용량 MIMO 시스템을 고려하고 하이브리드 프리코더 설계 방법을 제안한다. 부분 중첩 구조에서는 RF 대역 아날로그 프리코딩 행렬의 많은 원소들이 0의 값을 갖는 듬성 행렬 형태를 갖는다. 이러한 듬성 행렬의 특성을 이용하여, GTP 기반의 RF 대역 아날로그 프리코딩 행렬 및 기저대역 디지털 프리코딩 행렬을 설계하는 방법을 제안한다. 모의실험을 통하여, 제안 기술이 일반적인 완전 연결 구조를 갖는 경우와 비교해서 20~30% 정도의 구현 복잡도를 가지고도, 완전 연결 구조의 85% 이상의 주파수 효율 성능을 갖는다는 것을 보인다.

Near-Optimal Low-Complexity Hybrid Precoding for THz Massive MIMO Systems

  • Yuke Sun;Aihua Zhang;Hao Yang;Di Tian;Haowen Xia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권4호
    • /
    • pp.1042-1058
    • /
    • 2024
  • Terahertz (THz) communication is becoming a key technology for future 6G wireless networks because of its ultra-wide band. However, the implementation of THz communication systems confronts formidable challenges, notably beam splitting effects and high computational complexity associated with them. Our primary objective is to design a hybrid precoder that minimizes the Euclidean distance from the fully digital precoder. The analog precoding part adopts the delay-phase alternating minimization (DP-AltMin) algorithm, which divides the analog precoder into phase shifters and time delayers. This effectively addresses the beam splitting effects within THz communication by incorporating time delays. The traditional digital precoding solution, however, needs matrix inversion in THz massive multiple-input multiple-output (MIMO) communication systems, resulting in significant computational complexity and complicating the design of the analog precoder. To address this issue, we exploit the characteristics of THz massive MIMO communication systems and construct the digital precoder as a product of scale factors and semi-unitary matrices. We utilize Schatten norm and Hölder's inequality to create semi-unitary matrices after initializing the scale factors depending on the power allocation. Finally, the analog precoder and digital precoder are alternately optimized to obtain the ultimate hybrid precoding scheme. Extensive numerical simulations have demonstrated that our proposed algorithm outperforms existing methods in mitigating the beam splitting issue, improving system performance, and exhibiting lower complexity. Furthermore, our approach exhibits a more favorable alignment with practical application requirements, underlying its practicality and efficiency.

다중 사용자 Massive MIMO 시스템의 파일럿 오버헤드를 고려한 최적 기지국 안테나 수 및 사용자 수 분석 (Optimal Numbers of Base Station Antennas and Users in Multiuser Massive MIMO Systems with Pilot Overhead)

  • 정민채;최수용
    • 한국통신학회논문지
    • /
    • 제41권11호
    • /
    • pp.1630-1638
    • /
    • 2016
  • 본 논문에서는 다중 사용자(multiuser)가 다수의 기지국 안테나(MIMO, Multiple-Input and Multiple-Output)를 동시에 사용하는 다중 사용자 massive MIMO 시스템 환경을 고려한다. 다중 사용자를 동시에 지원하기 위해 기지국에서는 ZFBF(Zero-Forcing Beamforming) 기법을 고려하고 수신 신호 검출을 위해 파일럿 신호를 고려한 하향 링크 프레임 구조를 적용하여 평균 셀 용량을 도출한다. 평균 셀 용량은 기지국 안테나 수 및 사용자 수에 대해 오목 함수 (concave function)임을 수식적으로 증명하고, 오목 함수 특징을 통해 최적의 기지국 안테나 수 및 사용자 수를 도출한다. 실험 결과를 통해 수식적으로 도출한 최적 값을 검증하고, 최적값 기반의 평균 셀 용량은 송신 SNR(Signal to Noise Ratio)에 비례하여 증가함을 확인할 수 있다.

Data-Driven-Based Beam Selection for Hybrid Beamforming in Ultra-Dense Networks

  • Ju, Sang-Lim;Kim, Kyung-Seok
    • International journal of advanced smart convergence
    • /
    • 제9권2호
    • /
    • pp.58-67
    • /
    • 2020
  • In this paper, we propose a data-driven-based beam selection scheme for massive multiple-input and multiple-output (MIMO) systems in ultra-dense networks (UDN), which is capable of addressing the problem of high computational cost of conventional coordinated beamforming approaches. We consider highly dense small-cell scenarios with more small cells than mobile stations, in the millimetre-wave band. The analog beam selection for hybrid beamforming is a key issue in realizing millimetre-wave UDN MIMO systems. To reduce the computation complexity for the analog beam selection, in this paper, two deep neural network models are used. The channel samples, channel gains, and radio frequency beamforming vectors between the access points and mobile stations are collected at the central/cloud unit that is connected to all the small-cell access points, and are used to train the networks. The proposed machine-learning-based scheme provides an approach for the effective implementation of massive MIMO system in UDN environment.

Low Complexity Zero-Forcing Beamforming for Distributed Massive MIMO Systems in Large Public Venues

  • Li, Haoming;Leung, Victor C.M.
    • Journal of Communications and Networks
    • /
    • 제15권4호
    • /
    • pp.370-382
    • /
    • 2013
  • Distributed massive MIMO systems, which have high bandwidth efficiency and can accommodate a tremendous amount of traffic using algorithms such as zero-forcing beam forming (ZFBF), may be deployed in large public venues with the antennas mounted under-floor. In this case the channel gain matrix H can be modeled as a multi-banded matrix, in which off-diagonal entries decay both exponentially due to heavy human penetration loss and polynomially due to free space propagation loss. To enable practical implementation of such systems, we present a multi-banded matrix inversion algorithm that substantially reduces the complexity of ZFBF by keeping the most significant entries in H and the precoding matrix W. We introduce a parameter p to control the sparsity of H and W and thus achieve the tradeoff between the computational complexity and the system throughput. The proposed algorithm includes dense and sparse precoding versions, providing quadratic and linear complexity, respectively, relative to the number of antennas. We present analysis and numerical evaluations to show that the signal-to-interference ratio (SIR) increases linearly with p in dense precoding. In sparse precoding, we demonstrate the necessity of using directional antennas by both analysis and simulations. When the directional antenna gain increases, the resulting SIR increment in sparse precoding increases linearly with p, while the SIR of dense precoding is much less sensitive to changes in p.

공간 상관도를 가지는 거대배열 다중안테나 시스템에서 압축채널 제한적 피드백 알고리즘 (Limited Feedback Precoding for Correlated Massive MIMO Systems)

  • 임연근;채찬병
    • 한국통신학회논문지
    • /
    • 제39A권7호
    • /
    • pp.431-436
    • /
    • 2014
  • 본 논문에서는 높은 공간 상관도(spatial correlation)를 가지는 massive MIMO(multiple-input multiple-output) 시스템에서 Compressive Sensing 기반의 제한적 피드백 알고리즘을 제안한다. 현실적으로 많은 안테나를 설치하기 위해 기지국에서는 조밀한 uniform square array를 가정하였다. 또한 다중 사용자를 지원하기 위해 기지국에서는 영점강제(zero-forcing) 프리코더를 사용하였다. 시뮬레이션 결과, 제안한 피드백 알고리즘이 기존의 random vector quantization 코드북 보다 더 좋은 성능을 보이고 피드백 오버헤드와 코드북 인덱스를 찾는 계산량이 감소함을 보였다.

Secrecy Spectrum and Secrecy Energy Efficiency in Massive MIMO Enabled HetNets

  • Zhong, Zhihao;Peng, Jianhua;Huang, Kaizhi;Xia, Lu;Qi, Xiaohui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.628-649
    • /
    • 2017
  • Security and resource-saving are both demands of the fifth generation (5G) wireless networks. In this paper, we study the secrecy spectrum efficiency (SSE) and secrecy energy efficiency (SEE) of a K-tier massive multiple-input multiple-output (MIMO) enabled heterogeneous cellular network (HetNet), in which artificial noise (AN) are employed for secrecy enhancement. Assuming (i) independent Poisson point process model for the locations of base stations (BSs) of each tier as well as that of eavesdroppers, (ii) zero-forcing precoding at the macrocell BSs (MBSs), and (iii) maximum average received power-based cell selection, the tractable lower bound expressions for SSE and SEE of massive MIMO enabled HetNets are derived. Then, the influences on secrecy oriented spectrum and energy efficiency performance caused by the power allocation for AN, transmit antenna number, number of users served by each MBS, and eavesdropper density are analyzed respectively. Moreover, the analysis accuracy is verified by Monte Carlo simulations.

Time Shifted Pilot Signal Transmission With Pilot Hopping To Improve The Uplink Performance of Massive MIMO System For Next Generation Network

  • Ruperee, Amrita;Nema, Shikha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권9호
    • /
    • pp.4390-4407
    • /
    • 2019
  • The paucity of pilot signals in Massive MIMO system is a vital issue. To accommodate substantial number of users, pilot signals are reused. This leads to interference, resulting in pilot contamination and degrades channel estimation at the Base Station (BS). Hence, mitigation of pilot contamination is exigency in Massive MIMO system. The proposed Time Shifted Pilot Signal Transmission with Pilot signal Hopping (TSPTPH), addresses the pilot contamination issue by transmitting pilot signals in non-overlapping time interval with hopping of pilot signals in each transmission slot. Hopping is carried by switching user to new a pilot signal in each transmission slot, resulting in random change of interfering users. This contributes to the change in channel coefficient, which leads to improved channel estimation at the BS and therefore enhances the efficiency of Massive MIMO system. In this system, Uplink Signal Power to Interference plus Noise Power Ratio (SINR) and data-rate are calculated for pilot signal reuse factor 1 and 3, by estimating the channel with Least Square estimation. The proposed system also reduces the uplink Signal power for data transmission of each User Equipment for normalized spectral efficiency with rising number of antennas at the BS and thus improves battery life.