• Title/Summary/Keyword: mass production

Search Result 3,557, Processing Time 0.031 seconds

Fabrication of Anisotropic Hexagram Particles by using the Micromolding Technique and Selective Localization of Patch (미세성형 기술과 패치의 선택적 제거방법을 이용한 이방성의 육각별 입자 제조)

  • Shim, Gyurak;Yeom, Su-Jin;Jeong, Seong-Geun;Kang, Kyoung-Ku;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.105-111
    • /
    • 2018
  • This study presents a novel and eco-friendly process that can precisely control the location of the patches on the patch particles. The method of manufacturing these anisotropic hexagram patch particles consists of sequential combinations of two separate methods such as a sequential micromolding technique for fabricating patch particles and a selective localization method for controlling the location of patches on the patch particles. The micromolding technique was carried out using physicochemically stable material as a micromold. In order to fabricate the highly stable patch anisotropic hexagram particles, the perfluoropolyether (PFPE) micromold was used to the process of the micromolding technique because they could prevent the problem of diffusion of hydrophobic monomers while conventional poly(dimethylsiloxane) (PDMS) micromold is limited to prevent the problem of diffusion of hydrophobic monomers. Based on combination methods of the micromolding technique and the selective localization method, the reproducibility and stability have been improved to fabricate 12 different types of anisotropic hexagram patch particles. This fabrication method shows the unique advantages in eco-friend condition, easy and fast fabrication due to less number of process, the feasibility of a mass production. We believe that these anisotropic hexagram patch particles can be widely utilized to the field of the directional self-assembly.

Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng

  • Chen, Jin-Lian;Sun, Shi-Zhong;Miao, Cui-Ping;Wu, Kai;Chen, You-Wei;Xu, Li-Hua;Guan, Hui-Lin;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.315-324
    • /
    • 2016
  • Background: Biocontrol agents are regarded as promising and environmental friendly approaches as agrochemicals for phytodiseases that cause serious environmental and health problems. Trichoderma species have been widely used in suppression of soil-borne pathogens. In this study, an endophytic fungus, Trichoderma gamsii YIM PH30019, from healthy Panax notoginseng root was investigated for its biocontrol potential. Methods: In vitro detached healthy roots, and pot and field experiments were used to investigate the pathogenicity and biocontrol efficacy of T. gamsii YIM PH30019 to the host plant. The antagonistic mechanisms against test phytopathogens were analyzed using dual culture, scanning electron microscopy, and volatile organic compounds (VOCs). Tolerance to chemical fertilizers was also tested in a series of concentrations. Results: The results indicated that T. gamsii YIM PH30019 was nonpathogenic to the host, presented appreciable biocontrol efficacy, and could tolerate chemical fertilizer concentrations of up to 20%. T. gamsii YIM PH30019 displayed antagonistic activities against the pathogenic fungi of P. notoginseng via production of VOCs. On the basis of gas chromatography-mass spectrometry, VOCs were identified as dimethyl disulfide, dibenzofuran, methanethiol, ketones, etc., which are effective ingredients for antagonistic activity. T. gamsii YIM PH30019 was able to improve the seedlings' emergence and protect P. notoginseng plants from soil-borne disease in the continuous cropping field tests. Conclusion: The results suggest that the endophytic fungus T. gamsii YIM PH30019 may have a good potential as a biological control agent against notoginseng phytodiseases and can provide a clue to further illuminate the interactions between Trichoderma and phytopathogens.

Antifungal Activities of Pseudomonas spp. Strains Against Plant Pathogens and Optimization of Culture Conditions (식물병원성 진균에 항균 효과를 지닌 슈도모나스 균주의 항진균 활성 증진을 위한 배양조건의 최적화)

  • Chang, Seog-Won;Choi, Byung-Jin;Hong, Jeum-Kyu;Rho, Yong-Taek
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.248-254
    • /
    • 2010
  • To define the optimum conditions for the mass production of four antifungal Pseudomonas spp. isolated from soil, we have investigated culture conditions and effects of various nutrient sources on the bacterial growth and evaluated antagonistic activity against Rhizoctonia solani and Sclerotinia homoeocarpa, plant pathogens. The optimum temperature and pH for the growth of these isolates were determined as pH 7.0 and $20^{\circ}$ or $25^{\circ}C$, respectively. Sucrose, tryptone, and $K_2HPO_4$ generally were more adequate for better growth as carbon, nitrogen and mineral source, respectively. The nutrient sources were also found to be very effective for high antifungal activities against R. solani and S. homoeocarpa. It was elucidated that YUD-F group (P. mandelii and P. fluorescens), which inhabit regions at relatively low temperature, had more broad spectrum and higher antifungal activity than YUD-O group (P. trivialis and P. jessenii) generally against R. solani and S. homoeocarpa. It is thought that the differences of the average temperature in the various habitats of Pseudomonas spp. influence the optimal growth temperature and antifungal activity. Especially, Pseudomonas spp. of YUD-O group showed the better antifungal activity against dollar spot caused by S. homoeocarpa, but showed relatively weaker antifungal activity against brown patch caused by R. solani.

Development Changes in the External Structure of the Head and the Histological Structure of the Eye in Artificially Reared Japanese Eel, Anguilla japonica, Leptocephalus and Glass Eel (극동산 뱀장어(Anguilla japonica) 인공 자어와 실뱀장어의 두부 변화 및 안구의 조직학적 변화)

  • Kim, Dae-Jung;Lee, Nam-Sil;Lee, Bae-Ik;Kim, Shin Kwon;Kim, Kyung-Kil
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1288-1294
    • /
    • 2013
  • Knowledge of morphological changes in eel larvae is very important for artificial rearing of eel larvae. In this study, we investigated the morphological structure of the head region and histological changes of the eye retina in artificially reared larvae at various stages and in glass eel just after metamorphosis. Structural changes were observed in the upper jaw (maxilla) and the lower jaw (mandible) after 100 dah (day after hatchery) and after metamorphosis. Teeth had degenerated by the time of completion of metamorphosis. Major histological changes observed in the eye retina were the formation of the outer plexiform layer and the outer nuclear layer from 100 dah larva and a change in the rod cell layer after metamorphosis. The cornea was not observed at 10 dah in the eel larva. More information is needed on the early developmental stages of eel larvae to enable mass production of glass eels. The results obtained in the present research will be useful when developing novel rearing programs for eel larvae.

Cloning, Expression, and Characterization of Endoglucanase Gene egIV from Trichoderma viride AS 3.3711

  • Huang, Xiaomei;Fan, Jinxia;Yang, Qian;Chen, Xiuling;Liu, Zhihua;Wang, Yun;Wang, Daqing
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.390-399
    • /
    • 2012
  • Endoglucanase gene egIV was cloned from Trichoderma viride AS 3.3711, an important cellulose-producing fungus, by using an RT-PCR protocol. The egIV cDNA is 1,297 bp in length and contains a 1,035 bp open reading frame encoding a 344 amino acid protein with an estimated molecular mass of 35.5 kDa and isoelectronic point (pI) of 5.29. The expression of gene egIV in T. viride AS 3.3711 could be induced by sucrose, corn straw, carboxymethylcellulose (CMC), or microcrystalline cellulose, but especially by CMC. The transcripts of egIV were regulated under these substrates, but the expression level of the egIV gene could be inhibited by glucose and fructose. Three recombinant vectors, pYES2-xegIV, $pYES2M{\alpha}$-egIV, and $pYES2M{\alpha}$-xegIV, were constructed to express the egIV gene in Saccharomyces cerevisiae H158. The CMCase activity of yeast transformants $IpYES2M{\alpha}$-xegIV was higher than that of transformant IpYES2-xegIV or $IpYES2M{\alpha}$-egIV, with the highest activity of 0.13 U/ml at induction for 48 h, illustrating that the modified egIV gene could enhance CMCase activity and that $MF{\alpha}$ signal peptide from S. cerevisiae could regulate exogenous gene expression more effectively in S. cerevisiae. The recombinant EGIV enzyme was stable at pH 3.5 to 7.5 and temperature of $35^{\circ}C$ to $65^{\circ}C$. The optimal reaction condition for EGIV enzyme activity was at the temperature of $55^{\circ}C$, pH of 5.0, 0.75 mM $Ba^{2+}$, and using CMC as substrate. Under these conditions, the highest activity of EGIV enzyme in transformant $IpYES2M{\alpha}$-xegIV was 0.18 U/ml. These properties would provide technical parameters for utilizing cellulose in industrial bioethanol production.

Antibacterial Activity and Probiotic Potential of Lactobacillus plantarum HKN01: A New Insight into the Morphological Changes of Antibacterial Compound-Treated Escherichia coli by Electron Microscopy

  • Sharafi, Hakimeh;Maleki, Hadi;Ahmadian, Gholamreza;Zahiri, Hossein Shahbani;Sajedinejad, Neda;Houshmand, Behzad;Vali, Hojatollah;Noghabi, Kambiz Akbari
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.225-236
    • /
    • 2013
  • Among several bacteria examined, an antibacterial-producing Lactobacillus strain with probiotic characteristics was selected and identified based on 16S rRNA gene sequencing. Subsequent purification and mode of action of the antibacterial compounds on target cells including E. coli were investigated. Maximum production of the antibacterial compound was recorded at 18 h incubation at $30^{\circ}C$. Interestingly, antibacterial activity remained unchanged after heating at $121^{\circ}C$ for 45 min, 24 h storage in temperature range of $70^{\circ}C$ to room temperature, and 15 min exposure to UV light, and it was stable in the pH of range 2-10. The active compounds were inactivated by proteolytic enzymes, indicating their proteinaceous nature, and, therefore, referred to as bacteriocin-like inhibitory substances. Isolation and partial purification of the effective agent was done by performing ammonium sulfate precipitation and gel filtration chromatography. The molecular mass of the GFC-purified active compound (~3 kDa) was determined by Tris-Tricine SDS-PAGE. To predict the mechanisms of action, transmission electron microscopy (TEM) analysis of ultrathin sections of E. coli before and after antibacterial treatment was carried out. TEM analysis of antibacterial compounds-treated E. coli demonstrated that the completely altered bacteria appear much darker compared with the less altered bacteria, suggesting a change in the cytoplasmic composition. There were also some membrane-bound convoluted structures visible within the completely altered bacteria, which could be attributed to the response of the E. coli to the treatment with the antibacterial compound. According to the in vivo experiments oral administration of L. plantarum HKN01 resulted in recovery of infected BALB/c mice with Salmonella enterica ser. Typhimurium.

A Study on the Highest Exposure Temperatures of Exposed Reinforced Concrete Structures at Fire (화재에 노출된 철근콘크리트 구조물의 최고노출온도 추정을 위한 연구)

  • Kim, Seong Soo;Lee, Jeong Bae;Kim, Il Kon;Song, Jong Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.94-100
    • /
    • 2013
  • In this paper, Machinery analysis was conducted, in order to predict highest exposure temperatures and the analyze fire damage in the case of fire on reinforced concrete structure. After analyzing differential thermal of reference materials in accordance with temperature of concrete reference core specimen, it turned out that powerful endothermic peak came resulting from evaporation of capillary water and get water untill $200^{\circ}C$, another endothermic peak came resulting from decomposition of calcium hydroxide at $520^{\circ}C$, and then mass of reference materials remarkably decreased due to endothermic reaction. Another powerful endothermic reaction came after decomposition of calcite at $720^{\circ}C$. After analyzing X-ray diffraction of reference materials in accordance with temperature of concrete reference core specimen, it turned out that calcium hydroxide existed until the temperature of $400^{\circ}C$, but CH almost disappeared and CaO appeared from $600^{\circ}C$. The production increased in proportion to the temperature. This is because that calcium hydroxide and calcite are decomposed and CaO is produced when the temperature of concrete increases with fire. It is estimated that calcium hydroxide and calcite are utterly decomposed and peak disappears, and peak of CaO is remarkably formed instead, at the temperature of $700-800^{\circ}C$.

Studies on Yukwa Processing Conditions and Popping Characteristics (유과 제조조건 및 팽화요인에 관한 연구)

  • Shin, Dong-Hwa;Choi, Ung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.6
    • /
    • pp.617-624
    • /
    • 1990
  • Proper processing condition of Yukwa(oil popped rice snack) for mass production and pop-ping mechanism of it were tested with Shinsun (waxy, Japonica type rice) which was excellent for Yukwa making. Optimum steaming time of dough was 15 min among 4 to 60 min and reasonable moisture content of the dough before steaming was 4895 among 48 to 53% which had good and fine texture. Acceptable stirring time of steamed dough was not significantly different among 1 to 4 min, but no stirring with much larger volume was shown very poor and too soft in texture. At the simplification test of milling method, wet milling was better then dry milling in expansion rate and high temperature treatment of dough at 6$0^{\circ}C$ gave negative effect on their quality. Extending high temperature treatment of dough, reducing sugars in the dough increased and it might be caused of starch degradation. In addition of some other protein sources to dough, Yukwa quality were in proportion to the protein content of the beans. At the long term storage of the Yukwa base, moisture absorption was different depending upon RH of atmosphere and the quality of Yukwa was inferior by storage time. By addition of some alcoholic beverage, such as Makkoli, Soju and Chungju, expansion rate and their texture were somewhat improved by increasing addition amount of them from 15% to. 30% on dough (w/w).

  • PDF

Effect of an Improving Agent for the Intestinal Function, a Poly Herbal Formulation (KTG075) on Secretion of Mucus (장기능개선제(KTG075)의 대장관내 점액(Mucus)분비에 미치는 영향)

  • Baik, Soon-Ok;Lee, You-Hui;Kim, Hyun-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.3
    • /
    • pp.356-360
    • /
    • 2005
  • The maintenance of intestinal health is complex and relies on a delicate balance between the diet, the normal microflora and mucosa, including the digestive epithelium and overlying mucus layer. The colorectal mucosa is protected by a visco-elastic mucus gel formed by high molecular mass glycoproteins referred to as mucins. Abnormality of mucin have been identified with colorectal disease. Constipation increases with age, and is more common among women than men in all age groups, e.g. 10% of men and 20% of women in the USA. The aim of the present study was conducted to investigate that the effects of formulation KTG075 from edible plants on intestinal function on mucus secretion, were examined by loperamide-induced constipation method using Sprague Dawley male rats. Epithelial cells of colonic crypt contained more mucus in the KTG075 group compared with those of the control group and the thickness of the mucus layer stained with alcian blue was significantly thicker in KTG075 treated rats compared with in control rats. Mucus production of epithelial cells of crypt and mucus contents at fecal and mucosa surfaces were reduced by loperamide-induced constipation. These results indicates that a poly herbal formulation KTG075 accelerates evacuation and activated intestines.

Low-temperature Rendering Technology Applied to Extract Black Beans, Peony and Green Tea for Scalp Repair (저온용출법을 이용한 검은콩, 작약, 녹차 추출물의 두피 개선 효과)

  • Min, Dae-Jin;Park, Nok-Hyun;Hwang, Jung-Sun;Moon, Sung-Ho;Lee, Ki-Hyun;Lee, John-Hwan;Ahn, Soo-Mi;Kim, Han-Kon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.1
    • /
    • pp.41-46
    • /
    • 2009
  • Problems with scalp lead to hair loss, dandruff, itchiness, and other illness. No clear causes of these problems have been found and it is difficult to treat them. Therefore, the best way to prevent and treat any problems with scalp is to maintain physiological homeostasis of scalp to keep it healthy. Recently, many scalp and hair product brands have attempted to use medicinal herbs which have been extracted in hot water and mixed with other ingredients due to mass-production and standardization issues. However, many nutrients and active substances are destroyed by hot-water extraction. Therefore, this study has applied low-temperature rendering to minimize destruction of substances to extract black beans, peony, and green tea that are known to improve conditions of scalp. Then, their contribution to the improvement of scalp health was assessed. In result, it was found that low-temperature rendering retains over two times greater anti-oxidizing strengths than hot-water extraction and that the extracts from low-temperature rendering effectively strengthen follicles and hair, moisturize scalp, and prevent itchiness. Therefore, low-temperature rendered black beans, peony, and green tea extracts can be used to make effective scalp treatments.