• 제목/요약/키워드: mass flux distribution

검색결과 100건 처리시간 0.022초

정상 할로우 콘 분무와 환형 공기 제트의 상호작용에 관한 수치적 연구 (Numerical Investigation of a Steady Non-Evaporating Hollow-Cone Spray Interacting with an Annular Air Jet)

  • 김우태;허강열
    • 한국분무공학회지
    • /
    • 제5권2호
    • /
    • pp.43-52
    • /
    • 2000
  • Numerical simulation of steady, non-evaporating hollow-cone sprays interacting with concentric annular air jets is performed using the discrete stochastic particle method in KIVA. The spray characteristics such as SMD, mean droplet velocity, liquid volume flux, air/liquid mass ratio, and droplet number density arc obtained and compared with the measurements involving different air flow rates in large and small annuli. Overall satisfactory agreement is achieved between calculation and experiment except for the deviation in the downstream SMD arising from uncertainty in the size distribution function at injection, and inaccuracy in the averaged spray parameters due to the small volumes of axisymmetric 2-D sector meshes close to the axis.

  • PDF

수평Y자형 분지관에서 증기-물 이상류의 상분리에 관한 실험적 연구 (Experimental Studies on Phase Separation of Steam-Water Two Phase Flow in Horizontal Y-Branching Conduit)

  • 안수환
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.886-893
    • /
    • 2000
  • The Characteristics of dividing the dispersed bubble, plug, and slug steam-water flow in the horizontal junctions with horizontal branches have been experimentally investigated. The experimental investigation of the separation phenomena in a $45^{\circ}$ horizontal wye with equal pipe inner diameter of 25 mm is presented to provide a data base for the development and verification of the analytical models. The phase separation and pressure distribution in the three legs of each test section are obtained through the set of measurements made in the present work. And the dependence of phase separation on different parameters, such as inlet quality and mass flux, is discussed.

과도열전도를 갖는 평판핀에서의 강제대류 열전달 (Forced Convection Heat Transfer in a Plate Fin With Transient Heat Conduction)

  • 조진호;이상균
    • 오토저널
    • /
    • 제9권4호
    • /
    • pp.69-76
    • /
    • 1987
  • A conjugate conduction-convection analysis has been made for a plate fin which exchanges heat with its fluid environment by forced convection. The analysis is based on a one- dimensional model for the plate fin whereby the transient heat conduction equation for the fin is solved simultaneously with the conservation equations for mass, momentum, and energy in the fluid boundary layer adjacent to the fin. The forced convection heat transfer coefficient is not specified in advance but is one the results of the numerical solutions. Numerical results of the overall heat transfer rate, the local heat transfer coefficient, the local heat flux, the fin efficiency and the fin surface temperature distribution for Pr=0.7 are presented for a wide range of operating conditions.

  • PDF

액적이탈을 고려한 관내 응축열전달계수 계산 모델 (A modeling of in-tube condensation heat transfer considering liquid entrainment)

  • 권정태;안예찬;김무환
    • 대한기계학회논문집B
    • /
    • 제22권7호
    • /
    • pp.946-955
    • /
    • 1998
  • Local condensation heat transfer coefficients in tubes were calculated by solving momentum and energy equations for annular film with liquid entrainment. The turbulent eddy distribution across the liquid film has been proposed and the calculated heat transfer coefficients were presented. Also turbulent Prandtl number effects on condensation heat transfer were discussed from three Pr$\_$t/ models. Finally, the calculated condensation heat transfer coefficients of R22 were compared with some correlations frequency referred to in open literature. This calculation model considering liquid entrainment predicted well the in-tube condensation heat transfer coefficient of R22 than the model not considering liquid entrainment. The effect of entrainment on heat transfer was predominant for high quality and high mass flux when the liquid film was turbulent.

PWM 제어형 고속 전자석의 특성 해석 (Characteristic Analysis of PWM Controlled High-Speed Magnet)

  • 성백주;이은웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1309-1311
    • /
    • 2005
  • The operating speed of PWM controlled high speed magnet is affected by mass of plunger magnetic motive force inductance and return spring It is impossible to change the value of them for the purpose of increasing the speed because these factors are related with each other This paper introduces a speed increasing method using a non magnetic ring which is welded in the middle of magnetic guide tube and also presents the characteristic equations results of FEM analysis for magnetic flux distribution and computer simulation results for the dynamic characteristics of plunger motion And we proved the effect of non magnetic ring by experiments using a prototype

  • PDF

불응축가스량이 가변전열 히트파이프의 열수송 특성에 미치는 영향 (Influence of NCG Charging Mass on the Heat Transport Capacity of Variable Conductance Heat Pipe)

  • 서정세;박영식;정경택
    • 설비공학논문집
    • /
    • 제18권4호
    • /
    • pp.320-327
    • /
    • 2006
  • Numerical analysis and experimental study are performed to investigate the effect of heat load and operating temperature on the thermal performance of several variable conductance heat pipe (VCHP) with screen meshed wick. The heat pipe is designed in 200 screen meshes, 500 mm length and 12.7 mm outer diameter tube of copper, water (4.8 g) is used as working fluid and nitrogen as non-condensible gas (NCG). Heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Analysis values and experimental data of wall temperature distribution along axial length are presented for heat transport capacity, condenser cooling water temperature change, degrees of an inclination angle and operating temperature. These analysis and experiment give the follow findings: For the same charging mass of working fluid, the operating temperature of heat pipe becomes to be high with the increasing of charging mass of NCG. When the heat flux at the evaporator section increases, the vapor pressure in the pipe rises and consequently compresses the NCG to the condenser end part and increases the active length of the condenser. From previous process, it is found out we can control the operating temperature effectively and also the analysis and experimental results are relatively coincided well.

판형열교환기 핀 홀의 위치 및 유속에 따른 누수율 및 내부 유동 특성에 관한 실험적 연구 (Experimental Study on Leak Flow Rate and Inner Flow Characteristics of Plate Heat Exchangers with Pin-hole Location and Mass Flux)

  • 송강섭;백창현;김성우;김용찬
    • 설비공학논문집
    • /
    • 제28권5호
    • /
    • pp.171-177
    • /
    • 2016
  • Plate heat exchangers have been widely used in various fields because of their high heat transfer coefficients, small area of installation, and ease of maintenance compared to other heat exchangers. However, when plate heat exchanger is used for a long time, leak can occur due to inner crack. Therefore, it is important to understand the inner flow characteristics in plate heat exchangers. In this study, the inner flow characteristics and flow rate of plate heat exchanger were evaluated using various flow directions, pin-hole sizes, and Reynolds numbers. In downflow, initially most water flowed to the opposite of the inlet due to distribution region. Then it gradually had a uniform distribution due to chevron configuration. In upflow, it had a uniform flow consistently due to the dominant gravity effect. As the Reynolds number increased, the leak rate was decreased due to the inertia effect regardless of the flow direction.

Effect of Partial Flow Reductions on DNAPL Source Dissolution Rate

  • Park, Eung-Yu;ParKer, Jeck C.
    • 대한자원환경지질학회:학술대회논문집
    • /
    • 대한자원환경지질학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.148-151
    • /
    • 2005
  • Field-scale DNAPL dissolution is controlled by the topology of DNAPL distributions with respect to the velocity field. A high resolution percolation model was developed and employed to simulate the distribution of DNAPL within source zones. Statistically anisotropic permeability values and capillary parameters were generated for 10${\times}$10${\times}$10 m domains at a resolution of 0.05 to 0.1 m for various statistical properties. TCE leakage was simulated at various rates and the distribution of residual DNAPL in 'fingers' and 'lenses' was computed. Variations in finger and lens geometries, frequencies, average DNAPL saturations, and overall source topology were predicted to be strongly influenced by statistical properties of the medium as well as by injection rate and fluid properties. Model results were found to be consistent with observations from controlled DNAPL release experiments reported in the literature. The computed distributions of aquifer properties and DNAPL were utilized to perform high-resolution numerical simulations of groundwater flow and dissolved transport. Simulations were performed to assess the effect of grout or foam injection in bore holes within the source zone and of shallow point-releases of fluids with various properties on dissolution in DNAPL dissolution rate, even for widely spaced injection points. The results indicate that measures that induced partial flow reductions through DNAPL source zones can significantly decrease dissolution rates from residual DNAPL. The benefit from induced partial flow reductions is two-fold: 1) local flow reduction in DNAPL contaminated zones reduces mass transfer rates, and 2) contaminant flux reductions occur due to the decrease in groundwater velocity

  • PDF

가막만 빈산소 발생 시 해수-퇴적물 경계면에서 인산염플럭스 특성 (Characteristics of Phosphate Flux at the Sediment-water Interface in Gamak Bay during the Hypoxic Water Mass)

  • 김숙양;전상호;이영식;이용화;김병만
    • 한국환경과학회지
    • /
    • 제20권9호
    • /
    • pp.1069-1078
    • /
    • 2011
  • The environmental changes related to hypoxic water mass were investigated at Gamak bay in summer times, June, July and August 2006. The hypoxic water mass was found, in first, at the northern area of Gamak bay on 27 June. This water mass has been sustained until the end of August and disappear on 13 September. In Gamak bay, the hypoxic water mass was closely related to geography. During the formation of oxygen deficiency, changes in dissolved nutrients was studied and found that on surface layer and lower layer, DIN were 0.80 ${\mu}M$~19.8 ${\mu}M$(6.03 ${\mu}M$) and 1.13 ${\mu}M$~60.83 ${\mu}M$(10.66 ${\mu}M$), and DIP were 0.01 ${\mu}M$~0.92 ${\mu}M$(0.24 ${\mu}M$), and 0.01 ${\mu}M$~3.57 ${\mu}M$(0.49 ${\mu}M$), respectively, far higher distribution on lower layer of the water where hypoxic water mass was occurred. The configuration of phosphorus was analyzed to figure out the possibility of release of phosphorus from sediments. It was found that the Labile-Phosphorus, which is capable of easy move to water layer by following environmental change was found more than 70%. Therefore, in Gamak bay, it was found that the possibility of large amount of release of soluble P into the water, while hypoxic water mass was occurred in deep layer was higher. It is suggested that DIP in the northern sea of Gamak bay mainly sourced from the soluble P from lower layer of the waters where hypoxic water mass was created more than that from basin. However, existence form of phosphorus in sediments during normal times, not during creation of hypoxic water mass, needs further study.

마이크로채널 내의 온도 분포 측정을 위한 미소 측정 구조물의 제작 (Fabrication of a novel micromachined measurement device for temperature distribution measurement in the microchannel)

  • 박호준;임근배;손상영;송인섭;박정호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1921-1923
    • /
    • 2001
  • In this work, an array of resistance temperature detector(RTD) was fabricated inside the microchannel in order to investigate in-situ flow characteristics. A rectangular straight microchannel, integrated with RTD's for temperature sensing and a heat source for generating the temperature gradient along the channel. were fabricated with the dimension of $200{\mu}m(W){\times}{\mu}m(D){\times}$48mm(L), while RTD measured precise temperatures at the inside-channel wall. 4" $525{\pm}25{\mu}m$ thick P-type <100> Si wafer was used as a substrate. For the fabrication of RTDs. 5300$\AA$ thick Pt/Ti layer was sputtered on a Pyrex glass wafer. Finally, glass wafer was bonded with Si wafer by anodic bonding, therefore RTD was located inside the microchannel. The temperature distribution inside the fabricated microchannel was obtained from 4 point probe measurements and Dl water is used as a working fluid. Temperature distribution inside the microchannel was measured as a function of mass flow rate and heat flux. As a result, precise temperatures inside the microchannel could be obtained. In conclusion, this novel temperature distribution measurement system will be very useful to the accurate analysis of the flow characteristics in the microchannel.

  • PDF