• Title/Summary/Keyword: mass estimator

Search Result 46, Processing Time 0.03 seconds

A wireless decentralized control experimental platform for vibration control of civil structures

  • Yu, Yan;Li, Luyu;Leng, Xiaozhi;Song, Gangbing;Liu, Zhiqiang;Ou, Jinping
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.47-56
    • /
    • 2017
  • Considerable achievements in developing structural regulators as an important method for vibration control have been made over the last few decades. The use of large quantities of cables in traditional wired control systems to connect sensors, controllers, and actuators makes the structural regulators complicated and expensive. A wireless decentralized control experimental platform based on Wi-Fi unit is designed and implemented in this study. Centralized and decentralized control strategies as sample controllers are employed in this control system. An optimal control algorithm based on Kalman estimator is embedded in the dSPACE controller and the DSP controller. To examine the performance of this control scheme, a three-story steel structure is developed with active mass dampers installed on each floor as the wireless communication platform. Experimental results show that the wireless decentralized control exhibits good control performance and has various potential applications in industrial control systems. The proposed experimental system may become a benchmark platform for the validation of the corresponding wireless control algorithm.

Cosmology with peculiar velocity surveys

  • Qin, Fei
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.43.5-44
    • /
    • 2021
  • In the local Universe, the gravitational effects of mass density fluctuations exert perturbations on galaxies' redshifts on top of Hubble's Law, called 'peculiar velocities'. These peculiar velocities provide an excellent way to test the cosmological model in the nearby Universe. In this talk, we present new cosmological constraints using peculiar velocities measured with the 2MASS Tully-Fisher survey (2MTF), 6dFGS peculiar-velocity survey (6dFGSv), the Cosmicflows-3 and Cosmicflows-4TF compilation. Firstly, the dipole and the quadrupole of the peculiar velocity field, commonly named 'bulk flow' and 'shear' respectively, enable us to test whether our cosmological model accurately describes the motion of galaxies in the nearby Universe. We develop and use a new estimators that accurately preserves the error distribution of the measurements to measure these moments. In all cases, our results are consistent with the predictions of the Λ cold dark matter model. Additionally, measurements of the growth rate of structure, fσ8 in the low-redshift Universe allow us to test different gravitational models. We developed a new estimator of the "momentum" (density weighted peculiar velocity) power spectrum and use joint measurements of the galaxy density and momentum power spectra to place new constraints on the growth rate of structure from the combined 2MTF and 6dFGSv data. We recover a constraint of fσ8=0.404+0.082-0.081 at an effective redshift zeff=0.03. This measurement is also fully consistent with the expectations of General Relativity and the Λ Cold Dark Matter cosmological model.

  • PDF

Variations of Estimated Pollutant Loading from Rural Streams with Sampling Intervals (채수빈도를 고려한 소하천의 수질오염부하량 특성 연구)

  • 강문성;박승우;윤광식
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.552-557
    • /
    • 1998
  • Sampling schemes are intended for use in situations where stream-flow data are collected regularly, but concentration data are collected during only a limited number of time periods. Estimating water pollutant loading considering sampling intervals is presented, and for illustrative purposes the criterion is applied to the sampling station HS#3 of the Balan-reservoir watershed which is located at the southwest of Suwon. The stratification is employed uniformly for all sampling strategies in that the strata boundaries are defined using the actual distribution of flow values and the selected nonexceedence probabilities to minimize inaccuracy. Ratio estimator for SS, T-N, and T-P were used in order to calculate the water pollutant loading. A sampling scheme incorporating stratified sampling with real-time of the sampling characteristics is found to give the appropriate estimate of the mass load.

  • PDF

Modeling and adaptive pole-placement control of LDPE autoclave reactor

  • Ham, Jae-Yong;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.146-151
    • /
    • 1992
  • A two-compartment four-cell model is developed for the adiabatic autoclave slim type reactor for free radical polymerization of low density polyethylene(LDPE). The mass and energy balances give rise to a set of ordinary differential equations, and by analyzing the system it is possible to predict properly not only the reactor performance but also the properties of polymer product. The steady state multiplicity is found to exist and examined by constructing the bifurcation diagram. The effects of various operation parameters on the reactor performance and polymer properties are investigated systematically to show that the temperature distribution plays the central role for the properties of polymer product. Therefore, it is essential to establish a good control strategy for the temperature in each compartment. In this study it is shown that the reactor system can be adoptively controlled by pole-placement algorithm with conventional PID controller. To accomplish a satisfactory control, the estimator and controller are initialized during the period of start-up.

  • PDF

Design of State-estimator using Extended Kalman Filter for Magnetic Levitation System (자기부상시스템에서의 확장칼만필터를 이용한 상태추정자 설계)

  • Sung H.K.;Jung B.S.;Cho J.M.;Jang S.M.;Kim D.S.;Yu M.H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1334-1336
    • /
    • 2004
  • The existing problems of the Electro-Magnetic Suspension system such as air-gap disturbance, mass variation and actuator/sensor failure are described in amore specific manner. These problem can not be solved by conventional state-feedback and output-feedback control. Extended Kalman Filter is to linearize about a trajectory that is continually updated with the state estimates resulting from the measurements. In this paper, first, the physical properties of the EMS system are described. second, Extended Kalman Filer designed as form appliable EMS system. It is shown that state estimation performance can be obtained with the use of Extended Kalman filter, and that results from simulation, stability analyze.

  • PDF

Adaptive Control of the Active Pantograph for a High-speed Train

  • Park, In-Ki;Park, Tong-Jin;Wang, Yeung-Yong;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.174.3-174
    • /
    • 2001
  • Electric power collection is one of the most important factors for the high-speed trains' operation. For the stable current collection, the contact wire of a catenary and the panhead of a pantograph should maintain a constant contact each other. In this paper, the catenary was modeled as a spring with time-varying stiffness from the point of a pantograph moving along the catenary, and the pantograph was modeled as a 3-D.O.F. mass-spring-damper system. Using the adaptive control method, the desired control performance could be obtained with the modeling errors and the time varying parameters. Also the state estimator was used considering the difficulty of applying the sensors obtaining feedback signals. Simulations were accomplished in various ...

  • PDF

3-Component Velocity of Magnetized plasma at Solar Photosphere

  • Jung, Hyewon;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.70.3-70.3
    • /
    • 2019
  • We present a method to estimate 3-component plasma velocity (Vx, Vy and Vz) at solar photosphere near solar disk center, using the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patch (SHARP). In Heliocentric-Cartesian Coordinates, the component of Vz is obtained from Dopplergram while the components of Vx and Vy are derived from the relation of $B_z{\overrightarrow{u}}=B_z{\overrightarrow{{\nu}_t}}-{\nu}_z{\overrightarrow{B_t}}$ (Demoulin & Berger 2003) using a series of vector magnetograms by an optical flow technique NAVE (Nonlinear Affine Velocity Estimator). This velocity measurement method is applied to AR 12158 producing an X1.6 flare along with a coronal mass ejection. We find noticeable upflow motions at both ends of flux ropes which become a major eruption part, and strong transverse motions nearby them before the eruption. We will discuss the change of plasma motions and magnetic fields before and after the eruption.

  • PDF

Caculating Ship Rudder Angle and Real-Time Mass Estimator Under Dynamic State (동적 상태의 선박 조향각 및 실시간 질량 추정 시스템)

  • Jin–hyuk Myung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.31-32
    • /
    • 2022
  • In Early vessels did not provide an exact equation for preventig the capsizing vessels. On land, many vehicle rollover prevention technologies using the steady-state Conrning Equations were developed, which showed better performance than the exiting method at sea. For better performance, It is proposed to improve safety mangement when turning vessel using the Ackerman geometic model-based Cornering Equations in this paper.

  • PDF

A Design of Adaptive Backstepping Controller for Improving Position Accuracy of Linear Motor-based Container Transportation System with Dynamic Friction (선형전동기기반 컨테이너 이송시스템의 위치정확도 향상을 위한 적응 Backstepping 제어기 설계)

  • Lee, Jin-Woo;Seo, Jung-Hyun;Han, Geun-Jo;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.405-413
    • /
    • 2006
  • In general mechanical servo systems, friction deteriorates the performance of controllers by its nonlinear characteristics. Especially, friction phenomenon causes steady-state tracking errors and limit cycles in position and velocity control systems, even though gains of controllers are tuned well in linear system model. Even if sensor is used higher accuracy level, it is difficult to improve tracking performance of the position to the same level with a general control method such as PID type. Therefore, many friction models were proposed and compensation methods have been researched actively. In this paper, we consider that the variation of mover's mass is various by loading and unloading. The normal force variation occurs by it an other parameters. Therefore, the proposed control system is composed of main position controller and a friction compensator. A parameter estimator for a nonlinear friction model is designed by adaptive control law and adaptive backstepping control method.

  • PDF

A Design of Adaptive Backstepping Controller for Improving Position Accuracy of Linear Motor-based Container Transportation System with Dynamic Friction (선형전동기기반 컨테이너 이송시스템의 위치정확도 향상을 위한 적응 Backstepping 제어기 설계)

  • Seo, Jung-Hyun;Han, Geun-Jo;Lee, Kwon-Soon;Lee, Jin-Woo
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.55-64
    • /
    • 2007
  • In general mechanical servo systems, friction deteriorates the performance of controllers by its nonlinear characteristics. Especially, friction phenomenon causes steady-state tracking errors and limit cycles in position and velocity control systems, even though gains of controllers are tuned well in linear system model. Even if sensor is used higher accuracy level, it is difficult to improve tracking performance of the position to the same level with a general control method such as PID type. Therefore, many friction models were proposed and compensation methods have been researched actively. In this paper, we consider that the variation of mover's mass is various by loading and unloading. The normal force variation occurs by it and other parameters. Therefore, the proposed control system is composed of main position controller and a friction compensator. A parameter estimator for a nonlinear friction model is designed by adaptive control law and adaptive backstepping control method.