• 제목/요약/키워드: mass damper

검색결과 624건 처리시간 0.023초

유공압 착륙장치 낙하시험 (Drop Test of an Oleo-pneumatic Landing Gear)

  • 김태욱;이상욱;신정우;이승규;김성찬;황인희;강신현
    • 한국항공우주학회지
    • /
    • 제38권11호
    • /
    • pp.1130-1135
    • /
    • 2010
  • 착륙장치는 완충장치를 이용하여 항공기 착륙 시의 충격을 흡수하는 역할을 한다. 다양한 종류의 완충장치가 존재하나, 완충효율 측면에서 가장 우수한 것은 유공압 방식이다. 착륙장치의 완충 성능은 반드시 낙하시험을 통해 입증하여야 하며, 이는 미 군사규격, 미연방 항공규정 등에서 공통적으로 요구하는 있는 사항이다. 이 논문에서는 낙하시험을 위한 설비 구성, 시험 절차 및 결과분석 방법을 실제 낙하시험 사례와 함께 제시한다.

빙-구조물 상호작용의 동적거동해석 (Prediction of Dynamic Behavior of Ice-Structure Interaction Process)

  • 임채환;이종원;신병천
    • 대한조선학회논문집
    • /
    • 제33권4호
    • /
    • pp.87-96
    • /
    • 1996
  • 평탄빙과 수직구조물이 상호작용 하는 경우의 구조물의 동적거동과 빙하중 추정을 하였다. 구조물의 형태는 수직구조물이고 얼음의 파괴형태는 분쇄파괴로 가정하였다. 평탄빙은 구조물과 접촉하여 분쇄파괴가 일어나는 접촉부위와 탄성변형을 하는 외곽부위로 나누었으며, 구조물은 스프링-질량-감쇄로 구성된 1자유도계로 치환하였다. 강성이 큰 구조물과 작은 구조물에 대하여 제시된 모델에 의한 계산결과와 실험결과를 비교하였다. 비교결과는 본 모델이 빙하중과 구조물의 거동추정을 정도있게 할 수 있다는 것을 보여주었다.

  • PDF

고체-유체의 상호작용을 고려한 왕복동 압축기의 성능예측 (Prediction of the performance of a reciprocating compressor taking fluid-solid interaction into account)

  • 고재철;주재만;박철희
    • 설비공학논문집
    • /
    • 제9권1호
    • /
    • pp.33-42
    • /
    • 1997
  • The reciprocating compressors are widely used in industrial fields for its simplicity in principle and high efficiency. But the design of it requires rigorous experiments due to its high dependence on many design parameters. In this work, a mathematical model is developed so that we can analyze the gas-solid interaction during the whole working processes of a reciprocating compressor. The governing equations, which represent the fluid-solid interaction, was derived from the unsteady Bernoulli's equation with the assumption of quasi-steady working process. The valve itself was assumed to be a one degree of freedom spring-mass-damper system. A simple thermodynamic relation, the ideal gas state equation, was used to give it an external force term assuming that the refrigerant behaves like an ideal gas. It was suggested to use a motor of higher driving frequency to enhance the performance of the reciprocating compressor without causing a faster failure of the valve.

  • PDF

상시진동 계측자료를 이용한 Nanjing TV탑의 강성계수 추정 (Identification of Stiffness Parameters of Nanjing TV Tower Using Ambient Vibration Records)

  • Kim Jae Min;Feng. M. Q.
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.291-300
    • /
    • 1998
  • This paper demonstrates how ambient vibration measurements at a limited number of locations can be effectively utilized to estimate parameters of a finite element model of a large-scale structural system involving a large number of elements. System identification using ambient vibration measurements presents a challenge requiring the use of special identification techniques, which ran deal with very small magnitudes of ambient vibration contaminated by noise without the knowledge of input farces. In the present study, the modal parameters such as natural frequencies, damping ratios, and mode shapes of the structural system were estimated by means of appropriate system identification techniques including the random decrement method. Moreover, estimation of parameters such as the stiffness matrix of the finite element model from the system response measured by a limited number of sensors is another challenge. In this study, the system stiffness matrix was estimated by using the quadratic optimization involving the computed and measured modal strain energy of the system, with the aid of a sensitivity relationship between each element stiffness and the modal parameters established by the second order inverse modal perturbation theory. The finite element models thus identified represent the actual structural system very well, as their calculated dynamic characteristics satisfactorily matched the observed ones from the ambient vibration test performed on a large-scale structural system subjected primarily to ambient wind excitations. The dynamic models identified by this study will be used for design of an active mass damper system to be installed on this structure fer suppressing its wind vibration.

  • PDF

직렬 4기통 엔진의 가진력 해석 (Analysis of Exciting Forces for In-Line 4 Cylinders Engine)

  • 김진훈;이수종;이우현;김정렬
    • 동력기계공학회지
    • /
    • 제12권1호
    • /
    • pp.41-46
    • /
    • 2008
  • The primary objective of this study is to truly understand exciting forces of the in-line 4 cylinders engine. Exciting forces of the engine apply a source of the vehicle NVH(Noise, Vibration, Harshness). To understand exciting forces, first was governed theoretical equations for single cylinder engine. And this theoretical equations was programming using MATLAB software. To compare theoretical analysis value, was applied MSC.ADAMS software. To determined the specification of engine(2,000cc, in-line 4) was applied ADAMS/Engine module. And this specification for engine was applied ADAMS/View and MATLAB software. The geometry model for ADAMS/View analysis was produced by the 3-D design modeling software. After imported 3-D model, each rigid body was jointed suitable. Under idle speed for engine, was analysed. The results of analysis are fairly well agreed with those of three analysis method. Using MATLAB software proposed in this study, engine exciting fores can be predicted. Also using ADAMS/Engine module and ADAMS/View software, engine exciting forces can be predicted.

  • PDF

Wind-Induced Vibration Control of a Tall Building Using Magneto-Rheological Dampers: A Feasibility Study

  • Gu, Ja-In;Kim, Saang-Bum;Yun, Chung-Bang;Kim, Yun-Seok
    • Computational Structural Engineering : An International Journal
    • /
    • 제3권1호
    • /
    • pp.61-68
    • /
    • 2003
  • A recently developed semi-active control system employing magneto-rheological (MR) fluid dampers is applied to vibration control of a wind excited tall building. The semi-active control system with MR fluid dampers appears to have the reliability of passive control devices and the adaptability of fully active control systems. The system requires only small power source, which is critical during severe events, when the main power source may fail. Numerical simulation studies are performed to demonstrate the efficiency of the MR dampers on the third ASCE benchmark problem. Multiple MR dampers are assumed to be installed in the 76-story building. Genetic algorithm is applied to determine the optimal locations and capacities of the MR dampers. Clipped optimal controller is designed to control the MR dampers based on the acceleration feedback. To verify the robustness with respect to the variation of the external wind force, several cases with different wind forces are considered in the numerical simulation. Simulation results show that the semi-actively controlled MR dampers can effectively reduce both the peak and RMS responses the tall building under various wind force conditions. The control performance of the MR dampers for wind is found to be fairly similar to the performance of an active tuned mass damper.

  • PDF

기체 중심 동축형 분사기의 접선방향 유입구 지름 변화에 따른 액체 가진 연구 (A Study on Dynamic Characteristics of Gas Centered Swirl Coaxial Injector Varying Tangential Inlet Diameter with Liquid Pulsation)

  • 오석일;박구정;김성주;이형원;윤영빈;최정열
    • 한국분무공학회지
    • /
    • 제22권2호
    • /
    • pp.62-68
    • /
    • 2017
  • It is important to study on the combustion instability to develop liquid rocket engines for preventing lower combustion efficiency and destruction of combustion chamber. There are many researches on simplex injector with liquid pulsation to solve this problem. In real rocket engine system, however, they use coaxial injectors. Therefore, research on coaxial injector with liquid pulsation is essential. In this study, we investigate dynamic characteristics of gas centered swirl coaxial injector varying tangential inlet diameter. A mechanical pulsator was used to generate an excitation in the liquid flow, and the response characteristics of the injector were confirmed. As tangential inlet diameter increased, mass flow rates increased and spray angle decreased. As tangential inlet diamter decreased, gain decreased because the pressure fluctuation in the injector manifold rarely passed through the inlet. Additionally, it was confirmed that a sufficiently small tangential inlet served as a damper.

연구소(硏究所) 건물(建物)의 슬래브 진동(振動) 성능개선(性能改善) 연구(硏究) (A Study on the Control of the Floor Vibration in a Research Building)

  • 백인희;강호섭;손영규
    • 한국건축시공학회지
    • /
    • 제7권3호
    • /
    • pp.75-82
    • /
    • 2007
  • A vibration in the building occurs by influences of the facility equipment and the structural system. As the building recently becomes higher and bigger, the vibration in the floor slab is issued. Specially, the vibration with $4{\sim}8Hz$ frequency is harder to control than any other range of frequency. This vibration easily affects human sensibility and often makes the resonance phenomenon by corresponding with the floor slab's natural frequency when people and heavy equipments move. Moreover, the permission regulations for the vibration of the building are established by building's purposes. However, it is not subdivided in detail and sometimes ambiguous to each client. Even though the vibration could cause negative influences in a research building, there is not the vibration criterion for a research building. Therefore, it is necessary to set up its own vibration criterion with the client before building and to keep checking this vibration criterion under the construction. This study proposes the reasonable control methods and the vibration criterion for floor slab's vibration which are adapted to the R4-project. The R4-project is a research building and a high-rise building also. Accordingly, this study could help to the next similar project in the design and the construction phase.

유전자 알고리즘을 이용한 SUSPENSION SEAT SYSTEM의 진동 승차감 최적화 (Vibration Ride Quality Optimization of a Suspension Seat System Using Genetic Algorithm)

  • 박선균;최영휴;최헌오;배병태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.584-589
    • /
    • 2001
  • This paper presents the dynamic parameter design optimization of a suspension seat system using the genetic algorithm. At first, an equivalent 1-D.O.F. mass-spring-damper model of a suspension seat system was constructed for the purpose of its vibration analysis. Vertical vibration response and transmissibility of the equivalent model due to base excitations, which are defined in the ISO's seat vibration test codes, were computed. Furthermore, seat vibration test, that is ISO's damping test, was carried out in order to investigate the validity of the equivalent suspension seat model. Both analytical and experimental results showed good agreement each other. For the design optimization, the acceleration transmissibility of the suspension seat model was adopted as an object function. A simple genetic algorithm was used to search the optimum values of the design variables, suspension stiffness and damping coefficient. Finally, vibration ride performance test results showed that the optimum suspension parameters gives the lowest vibration transmissibility. Accordingly the genetic algorithm and the equivalent suspension seat modelling can be successfully adopted in the vibration ride quality optimization of a suspension seat system.

  • PDF

진동방식의 원자간력 현미경으로 표면형상 측정시 발행하는 혼돈현상의 적응제어 (Adaptive Control of the Atomic Force Microscope of Tapping Mode: Chaotic Behavior Analysis)

  • 강동헌;홍금식
    • 제어로봇시스템학회논문지
    • /
    • 제6권1호
    • /
    • pp.57-65
    • /
    • 2000
  • In this paper, a model reference adaptive control for the atomic force microscope (AFM) of tapping mode is investigated. The dynamics between the AFM system and al sample is mathematically modeled as a second order spring-mass-damper system with oscillatory inputs. The attractive and repulsive forces between the tip of the AFM system and the sample are derived using the Lennard-Jones potential energy. By non-dimensionalizing the displacement of the tip and the input frequency, the chaotic behavior near a resonance frequency is better depicted through the non-dimensionalized equations. Four nonlinear analysis techniques, a phase portrait, sensitive dependence on initial conditions, a power spectral density function, and a Pomcare map are investigated. Because the equations of motion derived in this paper involve unknown parameter values such as the damping effect of the air and the interaction constants between materials, the standard model reference adaptive control is adopted. Two control objectives, the prevention of chaos and the tracking of reference signal, are pursued. Simulation results are included.

  • PDF