• Title/Summary/Keyword: mass configuration

Search Result 394, Processing Time 0.026 seconds

Dynamic Chanrateristics of Spindle for the External Cylindrical Grinding Machine Considered the Shell Mode Vibration of Wheel (Wheel의 원반 진동을 고려한 외경연삭 주축의 동특성)

  • 하재훈;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1000-1004
    • /
    • 1995
  • In the case of the external cylindrical grinding machine, the grinding mechanism can cause a wheel to vibrate due to a wheel cutter. This phenomena will bring about the unsymmetric wear up to high frequency without any relation of rotational speed. So far, when the grinding spindle is analyzed, it is assumed that a wheel is considered as lumped mass at the endof a beam. Nowadays, there is a tendency to use the wheel with a lsrge diameter or CBN wheel to achieve the high speed and accuracy grinding performance. Therefore, this kind of assumption is no longer valid. At the analysis of the grinding spindle, the parameter which dapends on the dynamic characteristics is a combination force between each part. For example, there is the tightness torque of a bolt and taper element in the grindle. In addition, the material property of the wheel can contribute the dynamic characteristics. This paper shows the mode participation of the shell mode of the wheel in the grindle and the dynamic characteristics according to the parameters which are the configuration of the flange and tightness torque of a bolt and taper. Modal parameter of the wheel, flange and the spindle can be extracted through frequency response function obtained by modal test. After that, by changing the tightness torque and kinds of wheel, we could accomplish the test in the whole combined grinding spindle. To perform modal analysis of vibration characteristics in the grinding spindle, we could develop the model of finite element method.

  • PDF

Performance Enhancement of a Low Speed Axial Compressor Utilizing Simultaneous Tip Injection and Casing Treatment of Groove Type

  • Taghavi-Zenouz, Reza;Behbahani, Mohammad Hosein Ababaf
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.91-98
    • /
    • 2017
  • Performance of a low speed axial compressor is enhanced through a proper configuration of blade row tip injection and casing treatment of groove type. Air injectors were mounted evenly spaced upstream of the blade row within the casing groove and were all aligned parallel to the compressor axis. The groove, which covers all the blade tip chord length, extends all-round the casing circumference. Method of investigation is based on solution of the unsteady form of the Navier-Stokes equations utilizing $k-{\omega}$ SST turbulence model. Extensive parametric studies have been carried out to explore effects of injectors' flow momentums and yaw angles on compressor performance, while being run at different throttle valve setting. Emphasis has been focused on situations near to stall condition. Unsteady numerical analyses for untreated casing and no-injection case for near stall condition provided to discover two well-known criteria for spike stall inception, i.e., blade leading edge spillage and trailing edge back-flow. Final results showed that with only 6 injectors mounted axially in the casing groove and at yaw angle of 15 degrees opposite the direction of the blade row rotation, with a total mass flow rate of only 0.5% of the compressor main flow, surprisingly, the stall margin improves by 15.5%.

Experimental Investigation on the Vortical Flows in a Single-Entry Swirl Mixing Chamber (단일공급 스월 혼합챔버 내의 와류유동에 대한 실험적 연구)

  • Kim, Hyung-Min;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.445-450
    • /
    • 2011
  • Swirling flows inside a swirl mixing chamber are investigated for simple configuration where swirl is produced by a tangential entry type swirl generator. The flow downstream of the swirl generator has been quantified by measurements two velocity components and their corresponding mean values along axial and radial direction using Particle Image Velocimetry(PIV). The mass flow rate of the tangential entry is increased in order to study their effect on the flow field. From the measurement profile of velocity and vorticity, flow mixing characteristics in a swirl mixing chamber are evaluated.

  • PDF

Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

  • Welaya, Yousri M.A.;Mosleh, M.;Ammar, Nader R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.529-545
    • /
    • 2013
  • Strong restrictions on emissions from marine power plants (particularly $SO_x$, $NO_x$) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heat-recovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

Added masses computation for unconventional airships and aerostats through geometric shape evaluation and meshing

  • Tuveri, Marco;Ceruti, Alessandro;Marzocca, Pier
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.241-257
    • /
    • 2014
  • The modern development in design of airships and aerostats has led to unconventional configurations quite different from the classical ellipsoidal and spherical ones. This new class of air-vehicles presents a mass-to-volume ratio that can be considered very similar to the density of the fluid displaced by the vehicle itself, and as a consequence, modeling and simulation should consider the added masses in the equations of motion. The concept of added masses deals with the inertia added to a system, since an accelerating or decelerating body moving into a fluid displaces a volume of the neighboring fluid. The aim of this paper is to provide designers with the added masses matrix for more than twenty Lighter Than Air vehicles with unconventional shapes. Starting from a CAD model of a given shape, by applying a panel-like method, its external surface is properly meshed, using triangular elements. The methodology has been validated by comparing results obtained with data available in literature for a known benchmark shape, and the inaccuracies of predictions agree with the typical precision required in conceptual design. For each configuration, a CAD model and a related added masses matrix are provided, with the purpose of assisting the practitioner in the design and flight simulation of modern airships and scientific balloons.

Synthesis and Characterization of Phenanthrene-substituted Fullerene Derivatives as Electron Acceptors for P3HT-based Polymer Solar Cells

  • Mi, Dongbo;Park, Jong Baek;Xu, Fei;Kim, Hee Un;Kim, Ji-Hoon;Hwang, Do-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1647-1653
    • /
    • 2014
  • 9,10-Bis(bromomethyl)phenanthrene reacted with fullerenes via a Diels-Alder reaction to give phenanthrene-substituted fullerene mono-adducts (PCMA) and bis-adducts (PCBA) as electron acceptors for organic photovoltaic cells (OPVs). The syntheses of the fullerene derivatives were confirmed by $^1H$ $^{13}C$ NMR spectroscopy and MALDI-TOF mass spectrometry. PCMA and PCBA showed better light absorption in the UV-visible region than $PC_{61}BM$. Their electrochemical properties were measured using cyclic voltammetry. Accordingly, the lowest unoccupied molecular orbital (LUMO) energy levels of PCMA and PCBA were -3.66 and -3.57 eV, respectively. Photovoltaic cells were fabricated with a ITO/PEDOT:PSS/poly(3-hexylthiophene)(P3HT):acceptor/LiF/Al configuration, where P3HT and PCBA are the electron donors and acceptors, respectively. The polymer solar cell fabricated using the P3HT:PCBA active layer showed a maximum power conversion efficiency of 0.71%.

Experimental Study on Leak Flow Rate and Inner Flow Characteristics of Plate Heat Exchangers with Pin-hole Location and Mass Flux (판형열교환기 핀 홀의 위치 및 유속에 따른 누수율 및 내부 유동 특성에 관한 실험적 연구)

  • Song, Kang Sub;Baek, Chanhyun;Kim, Sung Woo;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.5
    • /
    • pp.171-177
    • /
    • 2016
  • Plate heat exchangers have been widely used in various fields because of their high heat transfer coefficients, small area of installation, and ease of maintenance compared to other heat exchangers. However, when plate heat exchanger is used for a long time, leak can occur due to inner crack. Therefore, it is important to understand the inner flow characteristics in plate heat exchangers. In this study, the inner flow characteristics and flow rate of plate heat exchanger were evaluated using various flow directions, pin-hole sizes, and Reynolds numbers. In downflow, initially most water flowed to the opposite of the inlet due to distribution region. Then it gradually had a uniform distribution due to chevron configuration. In upflow, it had a uniform flow consistently due to the dominant gravity effect. As the Reynolds number increased, the leak rate was decreased due to the inertia effect regardless of the flow direction.

MULTIPLE FLUX SYSTEMS AND THEIR WINDING ANGLES IN HALO CME SOURCE REGIONS

  • Kim, Hye- Rim;Moon, Y.J.;Jang, Min-Hwan;Kim, R.S.;Kim, Su-Jin;Choe, G.S.
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.6
    • /
    • pp.181-186
    • /
    • 2008
  • Recently, Choe & Cheng (2002) have demonstrated that multiple magnetic flux systems with closed configurations can have more magnetic energy than the corresponding open magnetic fields. In relation to this issue, we have addressed two questions: (1) how much fraction of eruptive solar active regions shows multiple flux system features, and (2) what winding angle could be an eruption threshold. For this investigation, we have taken a sample of 105 front-side halo CMEs, which occurred from 1996 to 2001, and whose source regions were located near the disk center, for which magnetic polarities in SOHO/MDI magnetograms are clearly discernible. Examining their soft X-ray images taken by Yohkoh SXT in pre-eruption stages, we have classified these events into two groups: multiple flux system events and single flux system events. It is found that 74% (78/105) of the sample events show multiple flux system features. Comparing the field configuration of an active region with a numerical model, we have also found that the winding angle of the eruptive flux system is slightly above $1.5{\pi}$.

An Application of Topology Optimization for Strength Design of FPSO Riser Support Structure (FPSO Riser 지지 구조의 강도설계에 대한 위상최적화 응용)

  • Song, Chang-Yong;Choung, Joon-Mo;Shim, Chun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.153-160
    • /
    • 2010
  • This paper deals with the topology optimized design of the riser support structures for floating production storage and offloading units (FPSOs) under global and local loading conditions. For a preliminary study and validation of the numerical approach, a simplified plate under static loading is first evaluated with the representative topology optimization methods, the Homogenization Design Method (HDM) and Density Method (DM) or Simple Isotropic Material with Penalization (SIMP). In the context of the corresponding riser support structures, the design problem is formulated such that structure shapes based on design domain variables are determined by minimizing the compliance subject to a mass target, considering the stress criterion. An initial design model is generated based on an actual FPSO riser support configuration. The topology optimization results present improved design performances under various loading conditions, while staying within the allowable limit of the offshore area.

Novel Design of Two-Phase PM Vibration Motor Used for Cell-Phones (새로운 형태의 휴대폰용 2 상 진동모터의 설계)

  • Lee, Hong-Joo;Kim, Kwang-Suk;Lee, Chang-Min;Hwang, Gun-Yong;Hwang, Sang-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.218-223
    • /
    • 2008
  • Cell-phone becomes a necessary communication device in modern society. However, a paging signal by a sound transducer often acts as an unpleasant noise, thus necessitating a paging signal by a vibration motor. The conventional flat type vibration motor uses three-phase windings with three phase coils. In this article, a new design of a vibration motor using a V connection with two phase coils is presented, increasing mass productivity. For electromagnetic field analysis, due to the motor symmetry, two-dimensional modeling can be implemented for fast computation, and performance is predicted by the finite element method. The winding distribution angle turns out to be the most important design parameter for the elimination of dead points, and a new coil configuration is suggested which has no adverse effect on motor size and weight. Experimental tests of vibration confirm the validity of the proposed design.

  • PDF