• Title/Summary/Keyword: mass configuration

Search Result 394, Processing Time 0.027 seconds

Characterization of Low Molecular Weight Polyphenols from Pine (Pinus radiata) Bark

  • Mun, Sung-Phil;Ku, Chang-Sub
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.424-430
    • /
    • 2006
  • Low molecular weight polyphenols were isolated from hot water extracts of radiata pine (Pinus radiata) bark using a Sephadex LH-20 column and characterized by $^1H$ and $^{13}C$ NMR, UV, FT-IR, and GC-MS analyses. Major compounds isolated and identified were protocatechuic acid, trans-taxifolin, and quercetin. Trans-taxifolin, an important intermediate in biosynthetic route of proanthocyanidin (PA), was isolated in large quantities and indicates that PA is a major component of radiata pine bark. Small amounts of polyphenols were identified by GC-MS analysis. The presence of p-hydroxybenzoic acid, vanillic acid, protocatechuic acid, cis- and trans-feruic acid, p-coumaric acid, trans-caffeic acid, (-)-epicatechin, (+)-catechin, trans- and cis-taxifolin, (+)-gallocatechin, and quercetin was confirmed by comparison of mass fragmentation patterns and retention times (RT) with authentic samples. In addition, the presence of astringenin, astringenin glycoside, trans- and cis-leucodelphinidin was strongly assumed from characteristic mass fragment ions due to their conjugated structure and retro Diels-Alder reaction, and also from biosynthetic route of PA. GC-MS analysis allowed us to detect small amounts of phenolic acids and flavonoids and eventually discriminate trans- and cis-configuration in the identified polyphenols.

Dynamic properties of a building with viscous dampers in non-proportional arrangement

  • Suarez, Luis E.;Gaviria, Carlos A.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1241-1260
    • /
    • 2015
  • Any rational approach to define the configuration and size of viscous fluid dampers in a structure should be based on the dynamic properties of the system with the dampers. In this paper we propose an alternative representation of the complex eigenvalues of multi degree of freedom systems with dampers to calculate new equivalent natural frequencies. Analytical expressions for the dynamic properties of a two-story building model with a linear viscous damper in the first floor (i.e. with a non-proportional damping matrix) are derived. The formulas permit to obtain the equivalent damping ratios and equivalent natural frequencies for all the modes as a function of the mass, stiffness and damping coefficient for underdamped and overdamped systems. It is shown that the commonly used formula to define the equivalent natural frequency is not applicable for this type of system and for others where the damping matrix is not proportional to the mass matrix, stiffness matrix or both. Moreover, the new expressions for the equivalent natural frequencies expose a novel phenomenon; the use of viscous fluid dampers can modify the vibration frequencies of the structure. The significance of the new equivalent natural frequencies is expounded by means of a simulated free vibration test. The proposed approach may offer a new perspective to study the effect of viscous dampers on the dynamic properties of a structure.

Riser Configuration Design for a 15-MW Floating Offshore Wind Turbine Integrated with a Green Hydrogen Facility

  • Sung-Jae Kim;Sung-Ju Park
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.137-147
    • /
    • 2024
  • Green hydrogen presents a sustainable and environmentally friendly solution for clean energy production and transportation. This study aims to identify the optimal profile of green hydrogen transportation risers originating from a floating offshore wind turbine (FOWT) integrated with a hydrogen production facility. Employing the Cummins equation, a fully coupled dynamic analysis for FOWT with a flexible riser was conducted, with the tower, mooring lines, and risers described using a lumped mass line model. Initially, motion response amplitude operators (RAOs) were compared with openly published results to validate the numerical model for the FOWT. Subsequently, a parametric study was conducted on the length of the buoyancy module section and the upper bare section of the riser by comparing the riser's tension and bending moment. The results indicated that as the length of the buoyancy module increases, the maximum tension of the riser decreases, while it increases with the lengthening of the bare section. Furthermore, shorter buoyancy modules are expected to experience less fatigue damage, with the length of the bare section having a relatively minor impact on this phenomenon. Consequently, to ensure safety under extreme environmental conditions, both the upper bare section and the buoyancy module section should be relatively short.

Thermo-hydrodynamic investigation into the effects of minichannel configuration on the thermal performance of subcooled flow boiling

  • Amal Igaadi;Rachid El Amraoui;Hicham El Mghari
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.265-274
    • /
    • 2024
  • The current research focuses on the development of a numerical approach to forecast strongly subcooled flow boiling of FC-72 as the refrigerant in various vertical minichannel shapes for high-heat-flux cooling applications. The simulations are carried out using the Volume of Fluid method with the Lee phase change model, which revealed some inherent flaws in multiphase flows that are primarily due to an insufficient interpretation of shearlift force on bubbles and conjugate heat transfer against the walls. A user-defined function (UDF) is used to provide specific information about this noticeable effect. The influence of shape and the inlet mass fluxes on the flow patterns, heat transfer, and pressure drop characteristics are discussed. The computational results are validated with experimental measurements, where excellent agreements are found that prove the efficiency of the present numerical model. The findings demonstrate that the heat transfer coefficient decreases as the mass flux increases and that the constriction design improves the thermal performance by 24.68% and 10.45% compared to the straight and expansion shapes, respectively. The periodic constriction sections ensure good mixing between the core and near-wall layers. In addition, a slight pressure drop penalty versus the thermal transfer benefits for the two configurations proposed is reported.

Blasting resistance of curved sandwich composite concrete bunkers

  • Mahmudul Hasan;Ahmad B.H. Kueh
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.63-73
    • /
    • 2024
  • Improving the blast resistance of structural establishments has become an imperative engineering commitment to prevent property damage and fatalities in terrorist incidents. This study investigates the effects of blast mass and stand-off distance on CFRP skin concrete core sandwich bunkers of varying thicknesses using ABAQUS/Explicit software with CONWEP functionality. The considered parameters include TNT masses of 1, 10, and 25 kg and stand-off distances of 0.1, 1, 2, and 2.5 meters on structures with 200, 250, and 500 mm core thicknesses. The study finds that there exists a declining response corresponding to the blasting mass reduction coupled with increases in the stand-off distance and core thickness. The 500 mm thick bunker sustains less damage compared to those with 200 mm and 250 mm core thicknesses. The sandwich configuration remains structurally advantageous vs. those without skins. The sandwich bunker with a 500 mm thick concrete core gives the best performance against the 10 kg TNT blast load with a 1 m standoff distance exhibiting a 22.8% reduction in damage vs. that without skins. Mathematical expressions are then formulated for predicting maximum von Mises stress, principal stress, and displacement of sandwich bunkers as functions of TNT masses, stand-off distances, and core thicknesses.

Fluid-structure-soil interaction analysis of cylindrical liquid storage tanks subjected to horizontal earthquake loading

  • Kim, Jae-Min;Chang, Soo-Hyuk;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.615-638
    • /
    • 2002
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure considering the effects of the interior fluid and exterior soil medium in the frequency domain. The horizontal and rocking motions of the structure are included in this study. The fluid motion is expressed in terms of analytical velocity potential functions, which can be obtained by solving the boundary value problem including the deformed configuration of the structure as well as the sloshing behavior of the fluid. The effect of the fluid is included in the equation of motion as the impulsive added mass and the frequency-dependent convective added mass along the nodes on the wetted boundary of the structure. The structure and the near-field soil medium are represented using the axisymmetric finite elements, while the far-field soil is modeled using dynamic infinite elements. The present method can be applied to the structure embedded in ground as well as on ground, since it models both the soil medium and the structure directly. For the purpose of verification, earthquake response analyses are performed on several cases of liquid tanks on a rigid ground and on a homogeneous elastic half-space. Comparison of the present results with those by other methods shows good agreement. Finally, an application example of a reinforced concrete tank on a horizontally layered soil with a rigid bedrock is presented to demonstrate the importance of the soil-structure interaction effects in the seismic analysis for large liquid storage tanks.

Study on the Dynamic Characteristics of a Manual Transmission Using Linear Models (선형모델을 이용한 수동변속기의 동적 특성 연구)

  • Yoon, Jong-Yun;Lee, Iljae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.240-248
    • /
    • 2013
  • Torsional vibrations, such as the gear rattle of the manual transmission in vehicle systems, are correlated with the firing stroke from the engine. These vibro-impacts can be examined based upon linear time-invariant analysis. In order to understand the gear dynamics, a specific manual transmission with a front-engine front-wheel drive configuration is investigated. A method to reduce the degrees of freedom is suggested based upon the eigensolutions and frequency response functions, which will lead to the development of an efficient matrix size. The dynamic characteristics of single- and dual-mass flywheels are then compared. The effect of the dual-mass flywheel is investigated based upon the mobility analysis, which will lead to understanding of the concepts for avoiding vibro-impacts. A linear time-invariant system model is examined by employing the effective clutch stiffness from a two-stage clutch damper. Thus, the relationship between the dynamic characteristics and the clutch damper can be predicted by assuming a combination of different stage stiffness levels.

Numerical and experimental studies of cryogenic reciprocating expander without inner piston

  • Park, Sehyeon;Bae, Junhyuk;Kim, Kyoungjoong;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.3
    • /
    • pp.21-27
    • /
    • 2018
  • It is difficult to fabricate and maintain moving parts of expander at cryogenic temperature. This paper describes numerical analysis and experimental investigation on a cryogenic reciprocating expander without moving piston. An intake valve which takes high-pressure gas, and an exhaust valve which discharges low-pressure gas, are connected to a tube. The inside pressure of the tube is pulsated for work production. This geometric configuration is similar to that of pulse tube refrigerator but without regenerator. An orifice valve and a reservoir are installed to control the phase of the mass flow and the pressure. At the warm end, a heat exchanger rejects the heat which is converted from the produced work of the expanded gas. For the numerical analysis, mass conservation, energy conservation, and local mass function for valves are used as the governing equations. Before performing cryogenic experiments, we carried out the expander test at room temperature and compared the performance results with the numerical results. For cryogenic experiments, the gas is pre-cooled by liquid nitrogen, and then it enters the pulse tube expander. The experiments are controlled by the opening of the orifice valve. Numerical analysis also found the expander conditions that optimize the expander performance by changing the intake pressure and valve timing as well as the opening of the orifice valve. This paper discusses the experimental data and the numerical analysis results to understand the fundamental behavior of such a newly developed non-mechanical expander and elucidate its potential feature for cryogenic application.

Performance Characteristics of Type II LiBr-H2O Absorption Heat Pump in Accordance with the Refrigerant Heat Exchanger Configuration (냉매 열교환기 구성방법에 따른 제 2종 흡수식 히트펌프의 성능 특성 변화에 관한 연구)

  • Lee, Chang Hyun;Yoon, Jun Seong;Kim, In Gwan;Kwon, Oh Kyung;Cha, Dong An;Bae, Kyung Jin;Kim, Min Su;Park, Chan Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.7
    • /
    • pp.373-384
    • /
    • 2017
  • The objective of this study was to determine the effect of refrigerant heat exchanger on the performance of type II absorption heat pump performance using numerical analysis. Two heat exchange installation methods were used: solution to refrigerant and waste hot water to refrigerant. These methods were compared to the standard model of hot water flow without using refrigerant heat exchanger. When waste hot waters were bypassed to refrigerant heat exchanger, COP was not affected. However, steam mass generation rates were increased compared to those of the standard model. When solutions were bypassed to the refrigerant heat exchanger, results were different depending on the place where the solution rejoined. COP and steam mass generation rates were lower compared to those when waste heat water was passed to refrigerant heat exchanger. Thus, it is possible to obtain higher steam mass generation rates by using waste water and installing refrigerant heat exchanger.

A novel preparation of polyaniline in presence electric and magnetic fields

  • Hosseini, Seyed Hossein;Gohari, S. Jamal
    • Advances in materials Research
    • /
    • v.2 no.4
    • /
    • pp.209-219
    • /
    • 2013
  • We have described primary studies on conductivity and molecular weight of polyaniline separately in the electric and magnetic fields when it is used in a field effect experimental configuration. We report further studies on doped in-situ deposited polyaniline. First we have chemically synthesized polyaniline by ammonium peroxodisulfate in acidic aques and organic solutions at different times. Then we measured mass and conductivity and obtained the best time of polymerizations. In continue, we repeated these reactions separately under different electric and magnetic fields in constant time and measured mass and conductivity. The polyaniline is characterized by gel permeation chromatography (GPC), UV-Visible spectroscopy and electrical conductivity. High molecular weight polyanilines are synthesized under electric field, $M_w$ = 520000-680000 g/mol, with $M_w/M_n$ = 2-2.5. The UV-Visible spectra of polyanilines oxidized by ammonium peroxodisulfate and protonated with dodecylbenzenesulfonic acid (PANi-DBSA), in N-methylpyrolidone (NMP), show a smeared polaron peak shifted into the visible. Electrical conductivity of polyanilines has been studied by four-probe method. The conductivity of the films of emeraldine protonated by DBSA cast from NMP are higher than 500 and 25 S/cm under 10 KV/m of potential) electric field and 0.1 T magnetic field, respectively. It shows an enhanced resistance to ageing too. By the next steps, we carried chemical polymerization at the best electric and magnetic fields at different times. Finally, resulted in finding the best time and amount of the fields. The longer polymerization time and the higher magnetic field can lead to degradation of polyaniline films and decrease conductivity and molecular mass.