• Title/Summary/Keyword: mass concrete

Search Result 892, Processing Time 0.024 seconds

Computer modeling of crack propagation in concrete retaining walls: A case study

  • Azarafza, Mehdi;Feizi-Derakhshi, Mohammad-Reza;Azarafza, Mohammad
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.509-514
    • /
    • 2017
  • Concrete retaining walls are the most common types of geotechnical structures for controlling instable slopes resulting from lateral pressure. In analytical stability, calculation of the concrete retaining walls is regarded as a rigid mass when its safety is required. When cracks in these structures are created, the stability may be enforced and causes to defeat. Therefore, identification, creation and propagation of cracks are among the important steps in control of lacks and stabilization. Using the numerical methods for simulation of crack propagation in concrete retaining walls bodies are among the new aspects of geotechnical analysis. Among the considered analytical methods in geotechnical appraisal, the boundary element method (BEM) for simulation of crack propagation in concrete retaining walls is very convenient. Considered concrete retaining wall of this paper is Pars Power Plant structured in south side in Assalouyeh, SW of Iran. This wall's type is RW6 with 11 m height and 440 m length and endurance of refinery construction lateral forces. To evaluate displacement and stress distributions (${\sigma}_{1,max}/{\sigma}_{3,min}$), the surrounding, especially in tip and its opening crack BEM, is considered an appropriate method. By considering the result of this study, with accurate simulation of crack propagation, it is possible to determine the final status of progressive failure in concrete retaining walls and anticipate the suitable stabilization method.

Tc-To Method in Measurement of Concrete Crack (Tc-To법에 의한 콘크리트 균열측정)

  • 민정기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.108-114
    • /
    • 1997
  • Concrete is said to have a high degree of extensibility when it is subjected to large deformations without cracking. The cracking behavior of concrete in the field may even be more complex. For example, in mass concrete compressive stresses are developed during the very early period when temperatures are rising, and the tensile stresses do not develop until at a later age when the temperature begins to decline. Actual cracking and failure depend on the combination of factors and indeed it is rarely that a single adverse factor is responsible for cracking of concrete. The importance of cracking and the minimum width at which a crack is considered significant depend on the conditions of exposure of the concrete. The ultrasonic pulse measurements can be used to detect the development of cracks in structures such as dams, and to check deterioration due to frost or chemical action. An estimate of the depth of a crack visible at the surface can be obtained by measuring the transit times across the crack for two different arrangements of the transducers placed on the surface. In this paper, the concrete cracks that artificially introduced crack width is 1 and 2mm, crack depth is 2, 4, 6, 8cm were measured by Tc-To Method In consequence, the measured depth was increased with increase of measuring distance from concrete crack. The most reliable results were shown when the introduced crack width was 1mm, and the measuring distance was 10cm from concrete crack.

  • PDF

Modelling of the effects of alkali-aggregate reaction in reinforced concrete structures

  • Pietruszczak, S.;Ushaksaraei, R.;Gocevski, V.
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.627-650
    • /
    • 2013
  • This paper deals with application of a non-linear continuum model for reinforced concrete affected by alkali-aggregate reaction (AAR) to analysis of some nuclear structures. The macroscopic behaviour of the material affected by AAR is described by incorporating a homogenization/averaging procedure. The formulation addresses the main stages of the deformation process, i.e., a homogeneous deformation mode as well as that involving localized deformation, associated with formation of macrocracks. The formulation is applied to examine the mechanical behaviour of some reinforced concrete structures in nuclear power facilities located in Quebec (Canada). First, a containment structure is analyzed subjected to 45 years of continuing AAR. Later, an inelastic analysis is carried out for the spent fuel pool taking into account the interaction with the adjacent jointed rock mass foundation. In the latter case, the structure is said to be subjected to continuing AAR that is followed by a seismic event.

An Experimental Study on Freezing and Thawing Resistance of Rice Straw Ash Concrete (볏짚재 콘크리트의 동결융해 저항성에 관한 실험적 연구)

  • 김영익;성찬용;김경태;서대석;남기성
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.161-166
    • /
    • 1998
  • This experiment was on purpose to estimate freezing and thawing resistance concering with developing rice straw ash concrete which were mixed rice straw ash to cement as ratio of cement weight. Freezing and thawing test was done by Method A of KS F 2456. It could estimate change of original mass, pulse velocity and dynamic modulus of elasticity during test. Test results showed that 5% filled rice straw ash concrete had the highest durability factor(DF) as 86 and from 5% to 7.5% filled rice straw ash concrete showed higher DF than normal cement concrete.

  • PDF

Themal Stress Analysis of the Heat of Hydration Considering Pipe-Cooling (파이프 쿨링을 고려한 수화열 해석기법에 관한연구)

  • 긴진근;김국한;최계식;양주경;최고일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.274-279
    • /
    • 1995
  • The heat of hyderation of cement causes the internal temperature rise and volume change at early age, paticular in massive concrete structures. As the results of the temperature rise and extenal restraint conditions, the themal stress may induce cracks in concrete. Therefore various techenuques of the themal stress control of the mass concrete has been widely used. One of these techniques is pipe-cooling which is considered in this study. The objective of this paper is to develop finite element program which is capable of simulating the temperature history and the thermal stress considering pipe-cooling, creep and the modified elastic modulus dud to maturity effect.

  • PDF

The Mechanical Properties of Lightweight Concrete Using the Lightweight Aggregate Made with Recycled-plastic and high carbon fly ash (폐플라스틱과 고탄소 플라이애쉬 경량골재를 이용한 경량 콘크리트의 역학적 특성)

  • Jo, Byung-Wan;Park, Seung-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.640-643
    • /
    • 2004
  • Synthetic lightweight aggregates are manufactured with recycled plastic and fly ash with 12 percent carbon. Nominal maximum-size aggregates of 9.5mm were produced with fly ash contents of 0 percent, 35 percent, and 80 percent by total mass of the aggregate. An expanded day lightweight aggregate and a normal-weight aggregate were used as comparison. Mechanical properties of the concrete determined included density, compressive strength, elastic modulus, and splitting tensile strength. Compressive and tensile strengths were lower for the synthetic aggregates; however, comparable fracture properties were obtained. Relatively low compressive modulus of elasticity was found for concretes with the synthetic lightweight aggregate, although high ductility was also obtained. As fly ash content of the synthetic lightweight aggregate increased, all properties of the concrete were improved.

  • PDF

Mechanical and Durability Performance of Roller-Compacted Concrete with Fly Ash for Dam Applications

  • Park, Chan-Gi;Yoon, Jong-Whan;Kim, Wan-Young;Won, Jong-Pil
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.57-61
    • /
    • 2007
  • This study investigated the mechanical and durability performance of roller-compacted concrete (RCC) with fly ash for dam applications. A test program studied the effects on the properties of fresh and hardened RCC with fly ash replacement ratio, as well as the long-term durability of the resulting mixture. Fly ash replaced 20, 30, 40, and 50% by mass of the cement. Laboratory tests of the compressive strength, splitting tensile strength, shear strength, chloride ion permeability, abrasion, and drying shrinkage were conducted. The test results demonstrated that 30% fly ash replacement is an optimum level, and that this mixture has excellent mechanical and durability properties.

An Experimental Study on the Fundamental and Adiabatic Temperature Rise Properties of High Volume Fly Ash Concrete (HVFA 콘크리트의 기초물성 및 단열온도상승 특성에 관한 실험적 연구)

  • Kim, Sung-Su;Choi, Se-Jin;Jeong, Yong;Lim, Keun-Chang;Park, Dae-Gyun;Cho, Yun-Gu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.309-310
    • /
    • 2010
  • In this study we investigated the properties of the fundamental and adiabatic temperature rise of the concrete using high volume fly-ash. For this, the fly ash was used to replace cement at replacement ratio of 40% and 50% by mass, and then the slump, air content, bleeding, compressive strength and adiabatic temperature rise test of concrete were performed.

  • PDF

Experimental Study on Coefficient of Flow Convection (유수대류계수에 관한 실험적 연구)

  • 정상은;오태근;양주경;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.297-302
    • /
    • 2000
  • Pipe cooling method is widely used for reduction of hydration heat and control of cracking in mass concrete structures. However, in order to effectively apply pipe cooling systems to concrete structure, the coefficient of flow convection relating the thermal transfer between inner stream of pipe and concrete must be estimated. In this study, a device measuring the coefficient of flow convection is developed. Since a variation of thermal distribution caused by pipe cooling has a direct effect in internal forced flows, the developed testing device is based on the internal forced flow concept. Influencing factors on the coefficient of flow convection are mainly flow velocity, pipe diameter and thickness, and pipe material. finally a prediction model of the coefficient of flow convection is proposed using experimental results from the developed device. According to the proposed prediction model, the coefficient of flow convection increases with increase in flow velocity and decreases with increase in pipe diameter and thickness. Also, the coefficient of flow convection is largely affected by the type of pipe materials.

  • PDF

The Prediction of Remaining Service Life of Land Concrete Due to Steel Corrosion (철근부식에 의한 육지 콘크리트의 잔존수명 예측)

  • 정우용;윤영수;송하원;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.69-80
    • /
    • 2000
  • This paper presents the prediction of remaining service life of the concrete due to steel corrosion caused by the following three cases; carbonation, using sea sand and using deicing salts. The assessment of initiation period was generalized considering the existing perdiction models in the literature, corrosion experiment and field assessment. To evaluate the prediction equation of rust growth, the corrosion accelerating experiments was performed. The polarization resistance was measured by potentiostat and the conversion coefficient of polarzation resistance to corrosion rate was determined by the measurement of real mass loss. Chloride content, carbonation, cover depth, relative humidity, water-cement ratio(W/C), and the use of deicing salts were taken into account and the resulting prediction equation of rust growth was proposed on the basis of these properties. The proposed equation is to predict the rust growth during any specified period of time and be effective in particular for predicting service life of concrete in the case of using sea sand.