• 제목/요약/키워드: mass concrete

검색결과 884건 처리시간 0.024초

Influence of mass and contact surface on pounding response of RC structures

  • Khatiwada, Sushil;Larkin, Tam;Chouw, Nawawi
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.385-400
    • /
    • 2014
  • Pounding damage to bridges and buildings is observed in most major earthquakes. The damage mainly occurs in reinforced concrete slabs, e.g. building floors and bridge decks. This study presents the results from pounding of reinforced concrete slabs. A parametric investigation was conducted involving the mass of the pendulums, the relative velocities of impact and the geometry of the contact surface. The effect of these parameters on the coefficient of restitution and peak impact acceleration is shown. In contrast to predictions from numerical force models, it was observed that peak acceleration is independent of mass. The coefficient of restitution is affected by the impact velocity, total participating mass and the mass ratio of striker and struck block.

석탄 가스화 용융 슬래그를 혼합잔골재로 활용한 매스 콘크리트 수화열 저감 (Reduction of Hydration Heat of Mass Concrete Using Coal Gasification Slag as Mixed Fine Aggregates)

  • 한민철;김종;최일경;한준희
    • 한국건축시공학회지
    • /
    • 제21권6호
    • /
    • pp.551-562
    • /
    • 2021
  • 본 연구에서는 IGCC에서 발생하는 부산물인 CGS를 콘크리트용 혼합 잔골재로써 효율적으로 활용하는 방안을 제시하기 위하여 플라이애시 치환 매스 콘크리트의 수화열 저감 효과를 확보하기 위한 방안으로 CGS 기반 혼합 잔골재와 플라이애시 치환에 따른 수화열 저감 특성 분석 및 해석을 실시 하고자 한다. 따라서, 매스 콘크리트의 수화열 저감을 위하여 활용되는 플라이애시 기반 저발열 결합재에 CGS를 잔골재로 치환하여 최적의 조합으로 FA 30% 및 CGS를 잔골재로 50% 치환할 경우 저발열 결합재 FA를 단일 치환한 경우보다 복합상승 효과에 따라 수화열 저감 성능이 더 크게 나타났다. 따라서 산업부산물인 CGS 골재 조합에 플라이애시를 복합 치환한 분체-골재조합 재료 시스템은 매스 콘크리트 수화열 저감 공법의 효율적인 대안으로서 활용이 기대된다.

분체계 재료조합 및 석탄 가스화 용융 슬래그를 잔골재로 활용한 매스 콘크리트 수화열 저감 (Reducing Hydration Heat of Mass Concrete by Applying Combination of Powdered Materials and CGS as Fine Aggregate)

  • 박상원;한준희;한민철
    • 한국건축시공학회지
    • /
    • 제24권2호
    • /
    • pp.169-180
    • /
    • 2024
  • 본 연구는 분체계 재료조합 시멘트 및 CGS 잔골재 조합에 따른 콘크리트의 단열온도상승 시험결과를 통해 최적의 조합 비율을 도출하고, 이를 토대로 모의부재 시험 및 수화열 해석을 통하여 매스 콘크리트 구조물에서의 수화열 저감 성능에 대한 현장 적용성을 분석하였다. 분석결과 TBC+CGS 50%조합에서 콘크리트 중앙부와 표면부의 온도차이가 감소하며, 최고 온도 도달시간이 지연되어 시간경과에 따른 표면부 인장강도 증가로 온도응력에 따른 온도균열 발생을 저감시킬 수 있을 것으로 판단된다.

Optimum tuned mass damper design for preventing brittle fracture of RC buildings

  • Nigdeli, Sinan Melih;Bekdas, Gebrail
    • Smart Structures and Systems
    • /
    • 제12권2호
    • /
    • pp.137-155
    • /
    • 2013
  • Brittle fracture of structures excited by earthquakes can be prevented by adding a tuned mass damper (TMD). This TMD must be optimum and suitable to the physical conditions of the structure. Compressive strength of concrete is an important factor for brittle fracture. The application of a TMD to structures with low compressive strength of concrete may not be possible if the weight of the TMD is too much. A heavy TMD is dangerous for these structures because of insufficient axial force capacity of structure. For the preventing brittle fracture, the damping ratio of the TMD must be sufficient to reduce maximum shear forces below the values proposed in design regulations. Using the formulas for frequency and damping ratio related to a preselected mass, this objective can be only achieved by increasing the mass of the TMD. By using a metaheuristic method, the optimum parameters can be searched in a specific limit. In this study, Harmony Search (HS) is employed to find optimum TMD parameters for preventing brittle fracture by reducing shear force in additional to other time and frequency responses. The proposed method is feasible for the retrofit of weak structures with insufficient compressive strength of concrete.

인천국제공항 여객터미널 전면 고가 교량 공사 시공방법 및 수화열 대책 (Construction Method and Control System of the Heat of Hydration for Inchon International Airport Elevated Road Way)

  • 임채만;박명웅;조용기;조선규;김은겸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.869-881
    • /
    • 1999
  • Inchon International Airport Elevated Road Way is located between the Passenger Terminal Building and Transportaion Center which are Inchon International Airport core construction projects. The deck of the bridge is consists of 5-span or 6-span continuous pre-stressed concrete slab. Steel form has been used to enhance the quality of texture on concrete slab. Steel form has been used to enhance the quality of texture on concrete surface, lower surface of deck slab with the two way arch has been manufactured by highly professional manner in order to get an beautiful exterior architectural looks. The prestressed concrete deck slab is mass concrete structures with a high-specified concrete strength and a varying section in the range of 0.95-2.8m thickness. Therefore high risks of thermal cracking occurrence by heat of hydration highly are expected. To resolve such problem, we adopted type 1 cement and pipe cooking method at construction site through mass concrete specimen test and 3-dimensional analysis. For Pipe cooling we used 25mm diameter stainless pipes with wrinkles. Cooling pipe with spacing 50-60cm has been installed. And continuous pipe cooling with cooling water of 15$^{\circ}C$ was conducted for 2days. In present 8 span of all 29 spans construction has been completed. No thermal cracking heat hydration has been observed yet.

  • PDF

Accelerated life testing of concrete based on stochastic approach and assessment

  • Zhu, Binrong;Qiao, Hongxia;Feng, Qiong;Lu, Chenggong
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.111-120
    • /
    • 2017
  • This study aimed to design the accelerated life testing (ALT) of concrete, which stimulating the special natural environment maximumly. Its evaluation indexes, such as dynamic elastic modulus, mass and ultrasonic velocity were measured, and the variation of relative mass and relative dynamic elastic modulus of concrete were studied. Meanwhile, the microanalysis method was used. Moreover, an exploratory application of the stochastic approach, the Weibull distribution and the lognormal distribution, were made to assess the durability of concrete structures. The results show that the ALT for simulating natural environment is more close to the service process of concrete structure under actual conditions; The relative dynamic elastic modulus can be used as the dominant durability evaluation parameters, because it is more sensitive to the environmental factors compared with the relative quality evaluation parameters; In the course of the concrete deterioration, the destruction of the salt freezing cycle is the dominant factor, supplemented by other factors; Both of those two stochastic approaches can be used to evaluate the reliability of concrete specimens under the condition of ALT; By comparison, The lognormal distribution method is better to describe the reliability process.

Incremental extended finite element method for thermal cracking of mass concrete at early ages

  • Zhu, Zhenyang;Zhang, Guoxin;Liu, Yi;Wang, Zhenhong
    • Structural Engineering and Mechanics
    • /
    • 제69권1호
    • /
    • pp.33-42
    • /
    • 2019
  • Thermal cracks are cracks that commonly form at early ages in mass concrete. During the concrete pouring process, the elastic modulus changes continuously. This requires the time domain to be divided into several steps in order to solve for the temperature, stress, and displacement of the concrete. Numerical simulations of thermal crack propagation in concrete are more difficult at early ages. To solve this problem, this study divides crack propagation in concrete at early ages into two cases: the case in which cracks do not propagate but the elastic modulus of the concrete changes and the case in which cracks propagate at a certain time. This paper provides computational models for these two cases by integrating the characteristics of the extended finite element algorithm, compiles the corresponding computational programs, and verifies the accuracy of the proposed model using numerical comparisons. The model presented in this paper has the advantages of high computational accuracy and stable results in resolving thermal cracking and its propagation in concrete at early ages.

수화열에 의한 매스콘크리트 박스 라멘 구조물의 구조거동 연구 (A Study on the Structural Behavior in Mass Concrete Box Rahmen due to Hydration Heat)

  • 조병완;김영진;허민희
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.349-352
    • /
    • 1999
  • Concrete cracks due to hydration heat are a serious problem, particularly in mass concrete structures such as box rahmen, dam or footing of pier, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. In this, study, ABAQUS program package was used to calculate the temperature distributions generated by hydration heat and the thermal stress in box rahmen structure which have thickness of 1.7~2.2m, and applied for various equations of adiabatic temperature rise such as korean code, japanese code, convection coefficient and low heat cement code.

  • PDF

X-ray and gamma ray shielding behavior of concrete blocks

  • Hernandez-Murillo, Christian Geovanni;Contreras, J. Rafael Molina;Escalera-Velasco, Luis Alberto;de Leon-Martineza, Hector Asael;Rodriguez-Rodriguez, Jose Antonio;Vega-Carrillo, Hector Rene
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1792-1797
    • /
    • 2020
  • The shielding characteristics of two concrete blocks, widely used in the building industry in Mexico have been determined. These characteristics include the mass interaction coefficients, the linear attenuation coefficients and the half-value layers. The energy-dispersed X-ray fluorescence shows that the percentage mass content of each atom in the sample, and the atomic volume of the constituent elements of a material, plays an important role in its shielding capabilities. The total linear attenuation coefficients and the half-value layers were analyzed for a set of photon energies related to X-rays for diagnosis and cancer treatment with linear accelerators. Our results show that the concrete blocks have similar photon attenuation coefficients than the Portland concrete and better features than gypsum.

재생굵은골재를 사용한 고강도 콘크리트의 동결융해 특성 (Freezing and Thawing Properties of High Strength Concrete Using Recycled Coarse Aggregate)

  • 성찬용;임상혁
    • 한국농공학회논문집
    • /
    • 제46권2호
    • /
    • pp.59-66
    • /
    • 2004
  • This study was performed to evaluate the freezing and thawing properties of the high strength concrete using recycled coarse aggregate. The recycled coarse aggregate replaced natural crushed aggregate by 0%, 25%, 50%, 75% and 100%. The compressive strength of the concrete using recycled coarse aggregate showed more than 300 kgf/$cm^2$ at the curing age 28 days. The mass loss ratio by freezing and thawing was less than 1% at all mix type. The relative dynamic modulus of elasticity was decreased with increasing the freezing and thawing cycles. Also, the durability factor by the freezing and thawing was decreased with increasing the content of recycled coarse aggregate. But, the recycled concrete except 100% recycled coarse aggregate showed 60 or more durability factor in the freezing and thawing 300 cycles. Accordingly, these recycled coarse aggregate can be used for high strength concrete.