• Title/Summary/Keyword: masonry-infilled frame

Search Result 74, Processing Time 0.022 seconds

Seismic Performance Evaluation of Masonry Infilled Wall With Non-seismic Detail (비내진 상세를 가진 조적채움벽의 내진성능평가)

  • Park, Byung Tae;Kwon, Ki Hyuk
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.66-74
    • /
    • 2017
  • Masonry walls which are commonly used for partitions in low-rise reinforced concrete (RC) structures, can be easily exposed to high risks under strong earthquakes. Since the strength degradations cannot be protected under the ground motions, their applications cannot be recommended for building structures which are designed to possess high seismic performances. However, masonry-infilled walls are typically considered as non-structural elements in evaluating the seismic performance of building structures. In order to figure out this problem, this study performed experiments using two specimens-only RC frame and RC frame infilled with masonry walls- under static loading. Also, the study established analytical models representing fully infilled frames and bare frame, and compared their structural behavior with test results. In addition, analytical model representing partially infilled frames was established and analyzed. Test results indicated that strength and energy dissipating capacity were increased for IW-RN(fully infilled frames) compared to the NW(bare frame). The nonlinear static analysis of the three specimens was also conducted using the inelastic plastic hinge frame element and diagonal strut models, and the analytical results successfully simulated the nonlinear behaviour of the specimens in accordance with the test results.

Shake-table study of plaster effects on the behavior of masonry-infilled steel frames

  • Baloevic, Goran;Radnic, Jure;Grgic, Nikola;Matesan, Domagoj
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.195-204
    • /
    • 2017
  • The effects of plaster on the behavior of single-story single-bay masonry-infilled steel frames under in-plane base accelerations have been experimentally investigated by a shake-table. Tested structures were made in a 1/3 scale, with realistic material properties and construction methods. Steel frames with high and low flexural rigidity of beams and columns were considered. Each type of frame was tested with three variants of masonry: (i) non-plastered masonry; (ii) masonry infill with conventional plaster on both sides; and (iii) masonry infill with a polyvinyl chloride (PVC) net reinforced plaster on both sides. Masonry bricks were made of lightweight cellular concrete. Each frame was firstly successively exposed to horizontal base accelerations of an artificial accelerogram, and afterwards, to horizontal base accelerations of a real earthquake. Characteristic displacements, strains and cracks in the masonry were established for each applied excitation. It has been concluded that plaster strengthens the infill and prevents damages in it, which results in more favorable behavior and increased bearing capacity of plastered masonry-infilled frames compared to non-plastered masonry-infilled frames. The load-bearing contribution of the adopted PVC net in the plaster was not noticeable for the tested specimens, probably due to relative small cross section area of fibers in the net. Behavior of masonry-infilled steel frames significantly depends on frame stiffness. Strong frames have smaller displacements than weak frames, which reduces deformations and damages of an infill.

Correlation of Experimental and Analytical Inelastic Responses of A 1:12 Scale 10-Story Masonry-Infilled Reinforced Concrete Frame (1:12축소 10층 조적 채움 R.C. 골조의 비선형 거동에 대한 실험과 해석의 상관성)

  • 이한선;김정우
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.101-112
    • /
    • 2000
  • In many structures, the masonry infill panels have been used for architectural reasons and their influence on the structure is often ignored by engineers. However, it has been recognized that the presence of masonry infills may debates. Recently, the pushover analysis technique is used for the prediction of the inelastic behaviors of structures in the seismic evaluation of existing buildings. However, the reliability of this analysis method has not been fully checked with the test results, particularly in the case of masonry-infilled frames. The objective of this study is to verify the correlation between the experimental and analytical reponses of a high-rise masonry-infilled reinforced concrete frame using DRAIN-2DX program and the test results performed previously. It is concluded from this comparison that the strength and stiffness of members can be predicted with quite high reliability while the ductility capacity of members can not be described reasonably.

Push-Over Test of A 10-Story Reinforced Concrete Masonry Infilled Frame with Nonseismic Details (비내진 상세를 가진 10층 철근 콘크리트 조적채움 골조의 일방향 가력 실험)

  • 이한선;김정우;김상호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.513-518
    • /
    • 1999
  • The objective of this experiment is to observe the elastic and inelastic behaviors of high-rise reinforced concrete frame with infilled masonry. To do this a building frame designed according to Korean seismic code and detailed in the Korean conventional manner was selected. An 1:12 scale plane masonry-infilled frame model was manufactured according to similitude law. Push-over test were performed under the roof displacement control. To simulate the earthquake effect, the lateral force distribution was maintained to be an inversed triangular by using whiffle tree. From the tests, story displacements, lateral story forces, local plastic rotations and the relations between inter-story drift versus story shear are obtained. Based on the test results, conclusions on the characteristics of the elastic and inelastic behaviors of a high-rise reinforced concrete frame with infilled masonry are drawn.

  • PDF

Discontinuous deformation analysis for reinforced concrete frames infilled with masonry walls

  • Chiou, Yaw-Jeng;Tzeng, Jyh-Cherng;Hwang, Shuenn-Chang
    • Structural Engineering and Mechanics
    • /
    • v.6 no.2
    • /
    • pp.201-215
    • /
    • 1998
  • The structural behavior of reinforced concrete frame infilled with a masonry wall is investigated by the method of discontinuous deformation analysis (DDA). An interface element is developed and it is incorporated into DDA to analyze the continuous and discontinuous behavior of the masonry structure. The numerical results are compared with previous research and possess satisfactory agreement. Then the structural behavior and stress distribution of a reinforced concrete frame infilled with a masonry wall subjected to a horizontal force are studied. In addition, the justification of equivalent strut is assessed by the distribution of principal stresses. The results show that the behavior of the masonry structure is highly influenced by the failure of mortar. On the basis of the distribution of principal stress of the masonry wall in the reinforced concrete frame, the equivalent strut can be approximately substituted for the masonry wall without separation and opening. However, the application of equivalent strut to the masonry wall with separation and opening needs further study.

Analyzing lateral strength and failure modes in masonry infill frames: A mesoscale study

  • Sina GanjiMorad;Ali Permanoon;Maysam Azadi
    • Earthquakes and Structures
    • /
    • v.27 no.2
    • /
    • pp.113-126
    • /
    • 2024
  • In this study, the failure mechanisms of masonry-infilled frames, commonly employed in modern construction, are analyzed at the mesoscale. An equation has been formulated to predict various failure modes of masonry-infilled frames by examining 1392 frames. The equation takes into account variables such as the height-to-width ratio, compressive strength of the masonry prism, and plastic moment capacity of the frame section. The study reveals that the compressive strength of the masonry prism and the height-to-width ratio exert the most significant influence on the lateral strength of masonry-infilled frames with a height-to-width ratio ranging from 0.2 to 1.2. The developed equation demonstrates substantial agreement with previously reported relationships, indicating high accuracy. These findings provide valuable insights into the lateral strength of infill masonry frames, which can contribute to their improved evaluation and design.

Analytical Modeling for Nonlinear Behaviors of a Masonry-Infilled RC Frame (조적채움 RC 골조의 비선형 거동에 대한 해석 모텔)

  • 이한선;우성우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.227-234
    • /
    • 2001
  • The responses of a 1:5 scale 3-story masonry-infilled RC frame which was designed only for gravity loads were simulated by using a nonlinear analysis program, DRAIN-2DX The objective of this study is to verify the correlation between the experimental and analytical responses of masonry-infilled RC frame. It is concluded from this comparison that the strength and stillness of the whole structure can be predicted with quite high reliability using compressive strut (compression link element, Type 09) while some local behavior cannot be described reasonably.

  • PDF

Correlation of Experimental and Analytical Responses in Nonlinear Behaviors of a Masonry-Infilled RC Frame (조적채움 RC골조의 비선켱 거동애 대한 실험과 해석의 상관성)

  • 이한선;우성우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.313-320
    • /
    • 2003
  • The responses of a 1:5 scale 3-story masonry-infilled RC frame which was designed only for gravity loads were simulated by using a nonlinear analysis program, DRAIN-2DX. The objective of this study is to verify the correlation between the experimental and analytical responses of a masonry-infilled RC frame. It is concluded from this comparison that the strength and stiffness of the whole structure can be predicted with quite high reliability using compressive strut (compression link element, Type 09).

  • PDF

A simplified method for estimating the fundamental period of masonry infilled reinforced concrete frames

  • Jiang, Rui;Jiang, Liqiang;Hu, Yi;Ye, Jihong;Zhou, Lingyu
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.821-832
    • /
    • 2020
  • The fundamental period is an important parameter for seismic design and seismic risk assessment of building structures. In this paper, a simplified theoretical method to predict the fundamental period of masonry infilled reinforced concrete (RC) frame is developed based on the basic theory of engineering mechanics. The different configurations of the RC frame as well as masonry walls were taken into account in the developed method. The fundamental period of the infilled structure is calculated according to the integration of the lateral stiffness of the RC frame and masonry walls along the height. A correction coefficient is considered to control the error for the period estimation, and it is determined according to the multiple linear regression analysis. The corrected formula is verified by shaking table tests on two masonry infilled RC frame models, and the errors between the estimated and test period are 2.3% and 23.2%. Finally, a probability-based method is proposed for the corrected formula, and it allows the structural engineers to select an appropriate fundamental period with a certain safety redundancy. The proposed method can be quickly and flexibly used for prediction, and it can be hand-calculated and easily understood. Thus it would be a good choice in determining the fundamental period of RC frames infilled with masonry wall structures in engineering practice instead of the existing methods.

Relation between Shear Strength of Masonry infills and Seismic Performance of Masonry-infilled Frames (조적채움벽의 전단강도에 따른 채움벽골조의 내진성능)

  • Yu, Eunjong;Kim, Min Jae;Lee, Sang Hyun;Kim, Chung Man
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.173-181
    • /
    • 2015
  • In this study, material tests were performed on the masonry specimens constructed with bricks and mortar used in Korea. The specimens included two types of thickness(0.5B and 1.0B) and physical conditions (good and poor). It was shown that 1.0B specimens have 3.2~1.8 times larger shear strength than 0.5B specimens and shear strength of specimens in poor condition was 66%~38% of those in good condition. Average shear stress of masonry-infills was calculated from previous experimental studies, and relationships with failure mode, material strength of masonry, aspect ratio, and frame-to-infill strength ratio were investigated. In addition, the effects of masonry strength on the seismic performance of a masonry-infilled frame was studied using a simple example building. It can be seen that the obtained average shear stress were considerably higher than the default masonry shear strength recommended by the ASCE 41, and low values the strength of masonry does not guarantee conservative evaluation results due to the early shear failure of frame members.