• 제목/요약/키워드: masonry materials

검색결과 97건 처리시간 0.021초

An experimental study of AAC masonry prisms with chases under compression

  • Gregoria K. Langstang;Teiborlang Warjri;Richard B. Lyngkhoi;Comingstarful Marthong
    • Advances in materials Research
    • /
    • 제13권5호
    • /
    • pp.375-389
    • /
    • 2024
  • Installing wiring or plumbing fixtures necessitates creating chases within masonry walls, which, while serving practical purposes, raises a crucial concern regarding the potential compromise of the masonry's structural integrity. Given these concerns, it becomes essential to thoroughly understand the impact of incorporating chases on masonry strength. In this study, 37 AAC masonry prisms (200×330×100 mm3) were cast and tested for compression. The prisms were equipped with chases of various depths -10 mm, 20 mm and 30 mm; and orientations (horizontal, inclined, and vertical), which were then filled with mortar using 1:2, 1:4, and 1:6 cement-to-sand ratios. The primary objectives were to assess the strength decrease in the prisms with different chase characteristics compared to a control specimen and to determine the percentage strength increase due to filling materials compared to unfilled chases. Key findings indicate that as chase depth increases, there is a substantial reduction in prism strength. However, the orientation of the chase does not significantly affect strength reduction. Importantly, filling the chases with mortar leads to a significant increase in prism strength. This study not only unveils the complex impact of chase characteristics on masonry strength but also emphasizes the crucial role of filling materials in strengthening these prisms.

Discrete element modeling of masonry structures: Validation and application

  • Pulatsu, Bora;Bretas, Eduardo M.;Lourenco, Paulo B.
    • Earthquakes and Structures
    • /
    • 제11권4호
    • /
    • pp.563-582
    • /
    • 2016
  • The failure mechanism and maximum collapse load of masonry structures may change significantly under static and dynamic excitations depending on their internal arrangement and material properties. Hence, it is important to understand correctly the nonlinear behavior of masonry structures in order to adequately assess their safety and propose efficient strengthening measures, especially for historical constructions. The discrete element method (DEM) can play an important role in these studies. This paper discusses possible collapse mechanisms and provides a set of parametric analyses by considering the influence of material properties and cross section morphologies on the out of plane strength of masonry walls. Detailed modeling of masonry structures may affect their mechanical strength and displacement capacity. In particular, the structural behavior of stacked and rubble masonry walls, portal frames, simple combinations of masonry piers and arches, and a real structure is discussed using DEM. It is further demonstrated that this structural analysis tool allows obtaining excellent results in the description of the nonlinear behavior of masonry structures.

Vibration and damping characteristics of the masonry wall strengthened with bonded fibre composite patch with viscoelastic adhesive layer

  • Laib, Salaheddine;Meftah, Sid Ahmed;Youzera, Hadj;Ziane, Noureddine;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • 제27권3호
    • /
    • pp.253-268
    • /
    • 2021
  • The present paper treats the free vibration problem of the masonry wall strengthened with thin composite plate by viscoelastic adhesive layer. For this goal two steps are considered in the analytical solution. In the first one, an efficient homogenisation procedure is given to provide the anisotropic properties of the masonry wall. The second one is dedicated to purpose simplified mathematical models related to both in-plane and out-of-plane vibration problems. In these models, the higher order shear theories (HSDT's) are employed for a more rigours description of the shear deformation trough the masonry wall and the composite sheet. Ritz's method is deployed as solution strategy in order to get the natural frequencies and their corresponding loss factors. The obtained results are validated with the finite element method (FEM) and then, a parametric study is undertaken for different kinds of masonry walls strengthened with composite sheets.

Analysis of the shear failure process of masonry by means of a meso-scopic mechanical modeling approach

  • Wang, Shuhong;Tang, Chun'an;Jia, Peng
    • Structural Engineering and Mechanics
    • /
    • 제24권2호
    • /
    • pp.181-194
    • /
    • 2006
  • The masonry is a complex heterogeneous material and its shear deformation and fracture is associated with very complicated progressive failures in masonry structure, and is investigated in this paper using a mesoscopic mechanical modelling, Considering the heterogeneity of masonry material, based on the damage mechanics and elastic-brittle theory, the newly developed Material Failure Process Analysis (MFPA) system was brought out to simulate the cracking process of masonry, which was considered as a three-phase composite of the block phase, the mortar phase and the block-mortar interfaces. The crack propagation processes simulated with this model shows good agreement with those of experimental observations by other researchers. This finding indicates that the shear fracture of masonry observed at the macroscopic level is predominantly caused by tensile damage at the mesoscopic level. Some brittle materials are so weak in tension relative to shear that tensile rather than shear fractures are generated in pure shear loading.

줄눈 보강을 통한 면내 방향의 조적조 사인장 전단강도 평가 (Shear Strength Evaluation in Masonry Assemblages by Reinforcing Materials in Joint)

  • 우종훈;신경재;이준섭;한승윤
    • 대한건축학회논문집:구조계
    • /
    • 제35권9호
    • /
    • pp.191-198
    • /
    • 2019
  • All over the Republic of Korea, there are many masonry buildings which have been built since 1970s. When the earthquake at Po-Hang occurred, this is the main cause of huge damage because the masonry buildings have not seismic capacity. When masonry buildings are failed, two type of the failure modes can be shown, which are in-plane mode and out-plane mode. In-plane mode can have seismic capacity in masonry so diagonal shear test is performed in this study. The purpose of this study was to find the best way to reinforce the materials through the diagonal shear test. Through the test, shear stress and shear modulus of elasticity will be calculated, referred to the ASTM E 519-02. The variables in this test are ${\phi}3$ wire, three types of wire meshes, polypropylene strap and different types of brick. Each variable is applied to the same condition of the $1.2m{\times}1.2m$ masonry walls which are made by ASTM E 519-02. Compared to each variable with shear stress and shear modulus of elasticity, the best way of reinforcing method to have seismic capacity will be proved in this study.

Damage evaluation of masonry buildings during Kahramanmaraş (Türkiye) earthquakes on February 06, 2023

  • Ercan Isik;Aydin Buyuksarac;Fatih Avcil;Enes Arkan;M.Cihan Aydin;Ali Emre Ulu
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.209-221
    • /
    • 2023
  • The Mw=7.7 (Pazarcık-Kahramanmaraş) and Mw=7.6 (Elbistan-Kahramanmaraş) earthquakes that occurred in Türkiye on 06.02.2023 with 9 hours' intervals, caused great losses of life and property as the biggest catastrophe in the instrumental period. The earthquakes affecting an area of 14% of the country were enormous and caused a great deal of loss of life and damage. Numerous buildings have collapsed or damaged at different levels, both in the city centers and in rural areas. Within the scope of this study, masonry structure damage built from different types of materials in the earthquake region was taken into consideration. In this study, the damage and causes of such masonry structures that do not generally receive engineering services were examined and explained in detail. Insufficient interlocking between wall-wall and wall-roof, inadequate masonry, lack of horizontal and vertical bond beams, usage of low-strength materials, poor workmanship, and heavy earthen roof are commonly caused to structural damages. Separation at the corner point and out-of-plane mechanism in structural walls, and heavy earthen roof damages are common types of damage in masonry structures.

Evaluation of a new proposed seismic isolator for low rise masonry structures

  • Kakolvand, Habibollah;Ghazi, Mohammad;Mehrparvar, Behnam;Parvizi, Soroush
    • Structural Engineering and Mechanics
    • /
    • 제77권4호
    • /
    • pp.481-493
    • /
    • 2021
  • Low rise masonry structures are relatively inexpensive and easier to construct compared to other types of structures such as steel and reinforced concrete buildings. However, masonry structures are relatively heavier and less ductile and more vulnerable to damages in earthquakes. In this research, a new innovative low-cost seismic isolator using steel rings (SISR) is employed to reduce the seismic vulnerability of masonry structures. FEA of a masonry structure, made of concrete blocks is used to evaluate the effect of the proposed SISR on the seismic response of the structure. Two systems, fixed base and isolated from the base with the proposed SISRs, are considered. Micro-element approach and ABAQUS software are used for structural modeling. The nonlinear structural parameters of the SISRs, extracted from a recent experimental study by the authors, are used in numerical modeling. The masonry structure is studied in two separate modes, fixed base and isolated base with the proposed SISRs, under Erzincan and Imperial Valley-06 earthquakes. The accelerated response at the roof level, as well as the deformation in the masonry walls, are the parameters to assess the effect of the proposed SISRs. The results show a highly improved performance of the masonry structure with the SISRs.

나선형철물을 사용한 치장벽체 개구부 보강 효과에 관한 연구 (A Study on Reinforcement Effect of Face Wall with Opening using Spiral Anchor)

  • 정원철;황완선;권기혁
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.37-40
    • /
    • 2007
  • Although masonry buildings fell into disfavour in the 1990's because of factors such ac bricklayers' high labor costs, bad reputation of poorly constructed masonry, masonry face wall is still preferred in korea as well as in other countries for its decorative value. Recently may problems with masonry face wall with opening have been reported, including cracks, deflection, swelling and even wall collapse in old masonry buildings, that mainly induced from the corrosion of connecting materials. So, it is necessary to develop the effective and uncorrosion connector. Therefore, this study aims to investigate the structural performance of masonry face walls with opening constructed by new connectors, spiral stainless anchors and to provide basic data for the field application of this method. The specimen reinforced bed joint has maximum load and displacement any other specimens.

  • PDF

Investigation of rate dependent shear bond properties of concrete masonry mortar joints under high-rate loading

  • John E. Hatfield;Genevieve L. Pezzola;John M. Hoemann;James S. Davidson
    • Computers and Concrete
    • /
    • 제33권5호
    • /
    • pp.519-533
    • /
    • 2024
  • Many materials including cementitious concrete-type materials undergo material property changes during high-rate loading. There is a wealth of research regarding this phenomenon for concrete in compression and tension. However, there is minimal knowledge about how mortar material used in concrete masonry unit (CMU) construction behaves in high-rate shear loading. A series of experiments was conducted to examine the bond strength of mortar bonded to CMU units under high-rate shear loading. A novel experimental setup using a shock tube and dynamic ram were used to load specially constructed shear triplets in a double lap shear configuration with no pre-compression. The Finite Element Method was leveraged in conjunction with data from the experimental investigation to establish if the shear bond between concrete masonry units and mortar exhibits any rate dependency. An increase in shear bond strength was observed when loaded at a high strain rate. This data indicates that the CMU-mortar bond exhibits a rate dependent strength change and illustrates the need for further study of the CMU-mortar interface characteristics at high strain rates.

FRP로 보강한 비보강 조적 벽체의 전단강도 산정 (Evaluation of Shear Strength of Unreinforced Masonry Walls Retrofitted by Fiber Reinforced Polymer Sheet)

  • 배백일;윤효진;최창식;최현기
    • 콘크리트학회논문집
    • /
    • 제24권3호
    • /
    • pp.305-313
    • /
    • 2012
  • 비보강 조적조 건축물은 전세계적으로 기존의 건물 및 역사 건축물의 많은 부분을 차지하고 있다. 특히, 최근 지진이 전세계적으로 빈번하게 나타남에 따라 비보강 조적조 구조물에 대한 내진 보강 대책이 요구되고 있다. 현재 비보강 조적조의 보강방법으로는 숏크리트, ECC jacketing, FRPs(fiber reinforced polymer sheet) 등이 개발되어 사용되고 있다. 특히 많은 엔지니어들이 FRPs를 사용한 보강방법을 채택하는 경향이 보이는데 이는 숏크리트나 ECC jacketing과는 달리 벽체의 두께 확장에 따른 구조물 자중 증가 문제없이 비보강 조적조의 전단강도를 향상시킬 수 있기 때문이다. 그러나 비보강 조적 벽체의 복잡한 역학적 거동과 FRPs를 사용한 실험 데이터의 부족은 아직까지도 적절한 보강량을 산정하는데 어려움을 주고 있다. 이 연구는 비보강 조적조의 면내 거동을 확인하고 두 가지의 다른 특징을 가진 FRPs를 사용한 보강 효과에 대한 정보를 주기 위해 수행되었다. 실험체는 1970년대 한국에서 빈번하게 지어진 저층형 연립주택의 내벽을 대상으로 하고 있으며 별도의 내진 설계는 되어있지 않은 상태이다. 실험체의 형상비는 실제 상황을 반영하기 위해 1에 가깝게 설정되어 있다. 보강 재료로는 탄소섬유보강 시트와 하이브리드 시트를 사용하였으며 이들은 각각 다른 극한 강도와 탄성계수 및 극한 변형률을 보유하고 있다. 연구 결과 비보강 조적 벽체의 면내 전단력 저항 성능을 확인하였으며 FRPs가 사용된 내진 보강 방안의 특성을 분석할 수 있었다. 또한 FRPs를 사용한 보의 전단보강 방법에 착안하여 비보강 조적조에 대한 FRPs의 보강 설계안을 도출할 수 있었다.