• 제목/요약/키워드: masonry architectural wall system

검색결과 11건 처리시간 0.024초

Out-of-plane behavior of perforated masonry walls strengthened with steel-bar truss system

  • Hwang, Seung-Hyeon;Mun, Ju-Hyun;Yang, Keun-Hyeok;Kim, Sanghee
    • Structural Engineering and Mechanics
    • /
    • 제83권6호
    • /
    • pp.799-810
    • /
    • 2022
  • This study investigated the effect of the strengthening efficiency of unbonded steel-bar truss system on the out-of-plane behavior of perforated masonry walls. Four full-scale unreinforced masonry (URM) walls with two different planes were prepared using the unbonded steel-bar truss system and a URM walls without strengthening. All masonry walls were tested under constant axial and cyclic lateral loads. The obtained test results indicated that the pinching effect in the out-plane behavior of masonry walls tends to decrease in the in- and out-of-plane strengthened URM walls using the unbonded steel-bar truss system with the higher prestressing force ratio (Rp) of vertical reinforcing bars in the unbonded steel-bar truss system, regardless of the perforated type of the masonry wall. Consequently, the highest maximum shear resistance and cumulative dissipated energy at peak load in the post-peak behavior were observed in the in- and out-plane strengthened URM walls with the highest Rp values, which are 2.7 and 6.0 times higher than those of URM. In particular, the strengthening efficiency of the unbonded steel-bar truss system was primarily attributed to the vertical prestressed steel-bars rather than the diagonal steel-bars, which indicates that the strains in the vertical prestressed steel-bars at the peak load were approximately 1.6 times higher than those in the diagonal steel-bars.

교육시설물의 조적치장벽체 내진보강에 적용 가능한 충전재 개발 기초연구 (A Basic Study on the Development of Filling Material using Seismic Retrofit of Masonry Architectural Wall Systems in Educational Facilities.)

  • 이주형;오준석;전상섭;손기영;나영주
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.180-181
    • /
    • 2019
  • South Korea has long been without major earthquakes. But 317 public facilities have been damaged by Po-Hang earthquake. Among them, 103 educational facilities suffered 25.6 billion won worth of damage. This is the most damaging of public facilities. The earthquake damage was mainly centered on non-seismic retrofit educational facilities and masonry architectural wall systems installed on the outer walls of buildings. Therefore, the purpose of this study is to develop a filling material that can be applied to the non-seismic retrofit of masonry architectural wall systems installed on the outer walls of educational facilities. To achieve the objective, first, set the filling material requirements. Second, set the sequence model of experiments and prepare for the experiment. Third, after the experiment, analyze the results obtained through the experiment. Forth, the optimal filling material is selected by comparing the analyzed results with the requirements. As a results, E-S-X sample using epoxy resin were selected for the seismic retrofit of masonry architectural wall systems in educational facilities. In the future, this study can be used as a basic material for developing seismic reinforcement methods guidelines in domestic existing educational facilities.

  • PDF

In-plane seismic performance of masonry wall retrofitted with prestressed steel-bar truss

  • Hwang, Seung-Hyeon;Kim, Sanghee;Yang, Keun-Hyeok
    • Earthquakes and Structures
    • /
    • 제19권6호
    • /
    • pp.459-469
    • /
    • 2020
  • An external prestressed steel-bar truss unit was developed as a new strengthening technology to enhance the seismic performance of an in-plane masonry wall structure while taking advantage of the benefits of a prestressed system. The presented method consists of six steel bars: two prestressed vertical bars to introduce a prestressing force on the masonry wall, two diagonal bars to resist shear deformation, and two horizontal bars to maintain the configuration. To evaluate the effects of this new technique, four full-scale specimens, including a control specimen, were tested under combined loadings that included constant-gravity axial loads and cyclic lateral loads. The experimental results were analyzed in terms of the shear strength, initial stiffness, dissipated energy, and strain history. The efficiency of the external prestressed steel-bar truss unit was validated. In particular, a retrofitted specimen with an axial load level of 0.024 exhibited a more stable post behavior and higher energy dissipation than a control specimen with an observed complete sliding failure. The four vertical bars of the adjacent retrofitting units created a virtual column, and their strain values did not change until they reached the peak shear strength. The shear capacity of the masonry wall structure with external prestressed steel-bar truss units could be predicted using the model suggested by Yang et al.

선형구조해석을 통한 노후된 학교시설 내진성능평가 (Seismic Performance Evaluation of An Old School Building Through Linear Analysis)

  • 이도형;김태완;김승래;추유림;김현식
    • 산업기술연구
    • /
    • 제38권1호
    • /
    • pp.21-27
    • /
    • 2018
  • In January 2018, the Ministry of Education published "Seismic design criteria for school buildings" and "Manual for seismic performance evaluation and retrofit of school buildings" to evaluate seismic performances through linear analysis. This paper evaluates the seismic performance of an old school building through the linear analysis. The target building was constructed in the late 1970s, and the seismic-force-resisting system was assumed to be a reinforced concrete moment frame with an un-reinforced masonry wall. As a result of the evaluation, the target building does not satisfy the 'life safety' level of 1.2 times the design spectrum. The average strength ratio of moment frames, an indicator of the level of seismic performance tends to be controlled by beams. However, through the Pohang earthquake, it was known that the short column effect caused by the partially infilled masonry wall caused shear failure of the columns in school buildings. Therefore, it is necessary to improve the linear analysis so that the column controls the average strength ratio of moment frames.

FRP 시트 및 강봉 트러스 시스템으로 보강된 조적벽의 내진성능 비교 연구 (Comparative Study on Seismic Performance of Masonry Wall Strengthened by FRP Sheet or Steel-Bar Truss System)

  • 이혜지;김상희;양근혁
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권5호
    • /
    • pp.1-9
    • /
    • 2022
  • 이 연구에서는 Hwang et al.(2021a, 2021b)가 제시한 강봉 트러스 시스템과 FRP 시트로 보강된 조적벽체의 면내·외 내진성능을 비교평가하였다. 면내·외 가력에서 FRP 시트로 보강된 조적벽체의 최대 내력은 각각 무보강 조적벽체의 71% 및 85% 수준으로 순수 조적벽체의 내력을 발휘하지 못하고 더 낮은 내진 성능을 보였다. 강봉 트러스 시스템으로 보강된 조적벽체의 최대 내력은 무보강 조적벽체에 비해 약 1.8배 높았다. 강봉 트러스 시스템은 FRP 시트 부착 공법에 비해 최대 내력, 강성, 에너지 소산능력 향상에 뛰어났다. 하지만, FRP 시트로 보강된 조적벽체의 경우, FRP시트를 조적벽체의 전체에 보강함으로써 조적벽체가 과보강되었고, 실험체가 미끄러짐 파괴가 발생 강성발현 증가효과가 미미한 것으로 판단된다. 추후, FRP 시트를 조적벽체의 일부분만 보강한 실험체와 강봉 트러스 시스템으로 보강한 실험체의 내진성능을 비교하는 후속연구가 필요하다.

A study on the seismic performance of reinforced concrete frames with dry stack masonry wall using concrete block

  • Joong-Won Lee;Kwang-Ho Choi
    • Earthquakes and Structures
    • /
    • 제24권3호
    • /
    • pp.205-215
    • /
    • 2023
  • Currently, many studies are underway at home and abroad on the seismic performance evaluation and dry construction method of the masonry structure. In this study, a dry stack masonry wall system without mortar using concrete blocks is proposed, and investigate the seismic performance of dry filling wall frames through experimental studies. First, two types of standard blocks and key blocks were designed to assemble dry walls of concrete blocks. And then, three types of experiments were manufactured, including pure frame, 1/2 height filling wall frame, and full height filling wall frame, and cyclic load experiments in horizontal direction were performed to analyze crack patterns, load displacement history, rebar deformation yield, effective stiffness change, displacement ductility, and energy dissipation capacity. According to the experimental results, the full height filling wall frame had the largest horizontal resistance against the earthquake load and showed a high energy dissipation capacity. However, the 1/2 height filling wall frame requires attention because the filling wall constrains the effective span of the column, limiting the horizontal displacement of the frame. In addition, the concrete block was firmly assembled in the vertical direction of the wall as the horizontal movement between the concrete blocks was allowed within installation margin, and there was no dropping of the assembled concrete block.

Full-scale experimental evaluation of a panelized brick veneer wall system under simulated wind loading

  • Liang, Jianhai;Memari, Ali M.
    • Structural Engineering and Mechanics
    • /
    • 제38권1호
    • /
    • pp.99-123
    • /
    • 2011
  • Brick veneer over steel stud backup wall is lighter and easier to construct compared to brick veneer over concrete masonry backup wall. However, due to the relatively low stiffness of the steel stud backup, the brick veneer tends to crack under wind load. This paper briefly introduces a new panelized brick veneer with steel frame backup wall system that is developed to potentially address this problem. The experimental study of the performance of this system under simulated wind loading is discussed in detail. The test setup details and the test specimens are introduced, results of major interests are presented, and performance of the new system is evaluated based on the test results.

The First Skyscraper Revisited

  • Ali, Mir M.;Moon, Kyoung Sun
    • 국제초고층학회논문집
    • /
    • 제11권1호
    • /
    • pp.1-14
    • /
    • 2022
  • Debates on what is the first skyscraper have been ongoing from time to time since the construction of the Home Insurance Building in Chicago in 1885, which is generally recognized as the first built skyscraper. This paper attempts to verify this assertion through a detailed investigation after identifying the criteria that characterize a skyscraper. By considering and examining several competing buildings for the title of "first skyscraper" in terms of their levels of satisfying these criteria, the paper reconfirms that the Home Insurance Building in Chicago indeed qualifies as the first skyscraper and is the harbinger of future skyscrapers. By introducing technological and associated architectural innovations in this pioneering building, its designer William Le Baron Jenney paved the way for the construction of future skyscrapers. In traditional construction, heavy masonry walls especially at lower levels did not allow large window openings in exterior walls that would permit ample daylight. For the Home Insurance Building, originally built with 10 stories, Jenney created a metal-framed skeletal structure that carried the building's loads, making the building lighter and allowed for large windows permitting ample natural light to the building's interior. The exterior iron columns were encased in relatively small masonry piers mainly for fireproofing, weather-protection and façade aesthetics. Relying on the structural framing on the building's perimeter, the exterior masonry thus turned into a rudimentary "curtain wall" system, heralding the use of curtain wall construction in future skyscrapers. This building's innovative structural system led to what is known as the "Chicago Skeleton," and eventually produced remarkable skyscrapers all over the world.

Development of a displacement-based design approach for modern mixed RC-URM wall structures

  • Paparoa, Alessandro;Beyer, Katrin
    • Earthquakes and Structures
    • /
    • 제9권4호
    • /
    • pp.789-830
    • /
    • 2015
  • The recent re-assessment of the seismic hazard in Europe led for many regions of low to moderate seismicity to an increase in the seismic demand. As a consequence, several modern unreinforced masonry (URM) buildings, constructed with reinforced concrete (RC) slabs that provide an efficient rigid diaphragm action, no longer satisfy the seismic design check and have been retrofitted by adding or replacing URM walls with RC walls. Of late, also several new construction projects have been conceived directly as buildings with both RC and URM walls. Despite the widespread use of such construction technique, very little is known about the seismic behaviour of mixed RC-URM wall structures and codes do not provide adequate support to designers. The aim of the paper is therefore to propose a displacement-based design methodology for the design of mixed RC-URM edifices and the retrofit of URM buildings by replacing or adding selected URM walls with RC ones. The article describes also two tools developed for estimating important quantities relevant for the displacement-based design of structures with both RC and URM walls. The tools are (i) a mechanical model based on the shear-flexure interaction between URM and RC walls and (ii) an elastic model for estimating the contribution of the RC slabs to the overturning moment capacity of the system. In the last part of the article the proposed design method is verified through nonlinear dynamic analyses of several case studies. These results show that the proposed design approach has the ability of controlling the displacement profile of the designed structures, avoiding concentration of deformations in one single storey, a typical feature of URM wall structures.

강봉 트러스 시스템으로 보강된 조적벽체의 면내·외 내진 거동 평가 (In-plane and Out-of-plane Seismic Performances of Masonry Walls Strengthened with Steel-Bar Truss Systems)

  • 황승현;양근혁;김상희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권1호
    • /
    • pp.16-24
    • /
    • 2021
  • 이 연구에서는 강봉 트러스 시스템으로 보강된 조적벽체의 면내·외 거동에 대한 내진성능을 평가하였다. 강봉 트러스 시스템 보강은 무보강 조적벽체 1면에 2개의 강봉 트러스 시스템 유닛을 배치하였다. 면내 거동에 대한 실험결과는 무보강 조적벽체 및 벽체 1면에 1개의 강봉 트러스 시스템 보강된 조적벽체와 비교하였으며, 면외 거동에 대한 실험결과는 무보강 조적벽체와 비교하였다. 실험 결과, 강봉 트러스 시스템으로 보강된 조적벽체의 면내·외 초기 강성은 무보강 조적벽체에 비해 각각 1.9배 및 2.3배 높았으며, 면내·외 최대 내력은 각각 1.8배 및 1.9배 높았다. 특히 강봉 트러스 시스템으로 보강된 조적벽체의 면내·외 에너지 소산능력은 무보강 조적벽체에 비해 각각 6.1배 및 2.4배 높았으며, 등가 감쇠비는 각각 5.1배 및 1.2배 높았다. 즉, 강봉 트러스 시스템은 무보강 조적벽체의 면내 방향으로의 내진성능 향상뿐만 아니라 면외 방향으로의 내진성능 향상에도 유리할 것으로 판단된다.