International Journal of Computer Science & Network Security
/
제22권6호
/
pp.319-331
/
2022
The latest global COVID-19 pandemic has made the use of facial masks an important aspect of our lives. People are advised to cover their faces in public spaces to discourage illness from spreading. Using these face masks posed a significant concern about the exactness of the face identification method used to search and unlock telephones at the school/office. Many companies have already built the requisite data in-house to incorporate such a scheme, using face recognition as an authentication. Unfortunately, veiled faces hinder the detection and acknowledgment of these facial identity schemes and seek to invalidate the internal data collection. Biometric systems that use the face as authentication cause problems with detection or recognition (face or persons). In this research, a novel model has been developed to detect and recognize faces and persons for authentication using scale invariant features (SIFT) for the whole segmented face with an efficient local binary texture features (DLBP) in region of eyes in the masked face. The Fuzzy C means is utilized to segment the image. These mixed features are trained significantly in a convolution neural network (CNN) model. The main advantage of this model is that can detect and recognizing faces by assigning weights to the selected features aimed to grant or provoke permissions with high accuracy.
Kim, Jong-Sung;Hong, Seok-Hie;Han, Dong-Guk;Lee, Sang-Jin
ETRI Journal
/
제31권5호
/
pp.625-627
/
2009
This letter describes an improved side-channel attack on DES with the first four rounds masked. Our improvement is based on truncated differentials and power traces which provide knowledge of Hamming weights for the intermediate data computed during the enciphering of plaintexts. Our results support the claim that masking several outer rounds rather than all rounds is not sufficient for the ciphers to be resistant to side-channel attacks.
This paper presents a reliability model and a data-analytic procedure for a repairable unit subject to failures due to multiple non-identifiable causes. We regard a failure cause as a state and assume the life distribution for each cause to be exponential. Then we represent the dependency among the causes by a Markov switching model(MSM) and estimate the transition probabilities and failure rates by maximum likelihood(ML) method. The failure data are incomplete due to masked causes of failures. We propose a specific version of EM(expectation and maximization) algorithm for finding maximum likelihood estimator(MLE) under this situation. We also develop statistical procedures for determining the number of significant states and for testing independency between state transitions. Our model requires only the successive failure times of a unit to perform the statistical analysis. It works well even when the causes of failures are fully masked, which overcomes the major deficiency of competing risk models. It does not require the assumption of stationarity or independency which is essential in mixture models. The stationary probabilities of states can be easily calculated from the transition probabilities estimated in our model, so it covers mixture models in general. The results of simulations show the consistency of estimation and accuracy gradually increasing according to the difference of failure rates and the frequency of transitions among the states.
SITM (See-In-The-Middle) 공격은 부채널 정보를 활용한 차분 분석 기법 중 하나로, CHES 2020에서 제안되었다. 이 기법은 부분적으로 부채널 마스킹이 적용된 블록암호에서 부채널 마스킹이 적용되지 않은 중간 라운드의 전력 파형을 이용해 차분 분석을 진행한다. 블록암호 GIFT는 CHES 2017에 제안된 경량암호로, 블록암호 PRESENT에서 발견된 취약점을 보완하고 더욱 효율적인 구현이 가능하도록 설계되었다. 본 논문에서는 부분 마스킹이 적용된 GIFT-128에 대한 SITM 공격을 제안한다. 이 공격은 4-라운드와 6-라운드 부분 마스킹이 적용된 GIFT-128을 공격대상으로 하며, 공격에 필요한 시간/데이터 복잡도는 각각 214.01 /214.01, 216 /216 이다. 본 논문에서는 SITM 공격에서 사용 가능한 마스터키 복구 논리를 비교하여, 상황에 따라 더욱 효율적인 논리를 선택하는 기준을 성립한다. 마지막으로, NIST 표준 경량암호 공모사업 최종 후보 중 하나인 GIFT-COFB에 해당 공격을 적용하는 방안을 제시한다.
데이터 증강기법은 추가적인 데이터 구축 혹은 수집 행위 없이 원본 데이터셋의 양과 다양성을 증가시키는 방법이다. 데이터 증강기법은 규칙 기반부터 모델 기반 방법으로 발전하였으며, 최근에는 Masked Language Modeling (MLM)을 응용한 모델 기반 데이터 증강 연구가 활발히 진행되고 있다. 그러나 기존의 MLM 기반 데이터 증강 방법은 임의 대체 방식을 사용하여 문장 내 의미 변화 가능성이 큰 주요 토큰을 고려하지 않았으며 증강에 따른 레이블 교정방법이 제시되지 않았다는 한계점이 존재한다. 이러한 문제를 완화하기 위하여, 본 논문은 레이블을 고려할 수 있는 Re-labeling module이 추가된 MLM 기반 한국어 데이터 증강 방법론을 제안한다. 제안하는 방법론을 KLUE-STS 및 KLUE-NLI 평가셋을 활용하여 검증한 결과, 기존 MLM 방법론 대비 약 89% 적은 데이터 양으로도 baseline 성능을 1.22% 향상시킬 수 있었다. 또한 Gate Function 적용 여부 실험으로 제안 방법 Re-labeling module의 구조적 타당성을 검증하였다.
목적: 본 연구의 목적은 자화감수성 영상 (SWI)에 나타난 정상 노인의 뇌조직을 픽셀 별로 분석하기 위해 사용되는 다듬질 (smoothing)의 핵심 크기 효과를 보는 것이다. 대상과 방법: 이십 명의 정상 지원군 (평균 나이${\pm}$ 표준 편차 = $67.8{\pm}6.09$세, 여 14명, 남 6명) 이 실험에 대한 동의와 함께 본 연구에 참여하였다. 이 지원군 각각의 자화감수성 영상을 만들기 위해 일차원 혈류흐름 보상 삼차원 경사자장 에코 시퀀스를 이용해 크기과 위상 영상을 얻었고, 영상 처리와 영상 내 조직 분할에 사용되는 자화준비 급속획득 경사자장 에코 (MPRAGE) 시퀀스를 이용한 삼차원 시상면 T1 강조영상을 얻었다. 자화감수성 영상은 다시 위상영상을 이용하여 상자성 (paramagnetic) 물질의 존재 여부를 강조하는 PSWI (위상 영상에서 양수 값을 강조한 자화감수성 영상)과 반자성 (diamagnetic) 물질의 존재 여부를 강조하는 NSWI (위상 영상의 음수 값을 강조한 자화감수성 영상) 영상을 만들었다. 오직 뇌조직 부분만 나타나도록 조직이 아닌 부분을 차폐 (masking) 하는 과정을 거쳤다. 마지막으로 뇌조직 PSWI와 NSWI는 등방성의 0, 2, 4, 8 mm의 다듬질 핵심 크기를 이용하여 다듬질 되었다. 또한 각각의 다듬질 핵심 크기로 다듬질된 PSWI와 NSWI를 쌍 비교 t검정을 실행하여 각 픽셀 별로 비교하였다. 결과: 통계 분석의 중요도는 다듬질의 핵심 크기가 커질수록 증가하였고, 영상의 시그널 세기는 NSWI가 PSWI보다 컸다. 또한 영상의 픽셀 별 비교 분석에 가장 최적화 된 다듬질의 핵심 크기는 4였으며 쌍 비교 t검정 결과 뇌의 양쪽에서 차이가 난 뇌 조직의 위치와 범위는 뇌의 여러 지역에서 발견되었다. 결론: 상자성 물질을 강조한 PSWI는 자화감수성이 높은 뇌 여러 영역의 시그널 크기를 감소시켰다. 부분적인 부피효과와 큰 혈관의 기여도를 최소화 하기 위해서는 뇌 조직만 뽑아낸 자화감수성 영상의 복셀 별 분석이 사용되어야 하겠다.
Under a continuous manufacturing process, two dimension inspection system causes problems as blurring effect and low resolution and requires position calibration between frames. One dimension inspection system is, therefore, being researched as a substitution. In this paper, we implement mechanism of switching memory and processing data for reasonable one dimension inspection system. Redundant weft image and noise was suggested to be reduced by new method using modified morphological process and masked erosion process. From resulting image, line data and possible error information were obtained and constructed as a structure. Finally, error detecting algorithm was performed with this data structure. Processing time of error detecting was 0.625ms per line in applied system and experiment showed 94.7% of error detecting ability. This method is 20% faster in speed and 2.7% higher in error detecting ability comparing with the present method.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권5호
/
pp.1272-1290
/
2013
Privacy-preserving collaborative filtering schemes are becoming increasingly popular because they handle the information overload problem without jeopardizing privacy. However, they may be susceptible to shilling or profile injection attacks, similar to traditional recommender systems without privacy measures. Although researchers have proposed various privacy-preserving recommendation frameworks, it has not been shown that such schemes are resistant to profile injection attacks. In this study, we investigate two memory-based privacy-preserving collaborative filtering algorithms and analyze their robustness against several shilling attack strategies. We first design and apply formerly proposed shilling attack techniques to privately collected databases. We analyze their effectiveness in manipulating predicted recommendations by experimenting on real data-based benchmark data sets. We show that it is still possible to manipulate the predictions significantly on databases consisting of masked preferences even though a few of the attack strategies are not effective in a privacy-preserving environment.
In this paper, data collected from 22 different rural watersheds during stormflow conditions were analyzed. Those watersheds consisted of forest and cultivated land. EMC data analysis indicates that as agricultural land use increases, EMC values of TSS, COD and TN clearly tends to increase, but TP does not show a significant increase. Pattern of the pollutographs mostly has a similarity in hydrograph shape except nitrogen which inherently shows a variability and complication. The fraction of soluble reactive-P to TP increases as cultivated land use increases while mobile-nitrogen portion was higher in the runoff from forested watersheds than agricultural areas. During stormflow, pollutograph of the nitrogen was determined mainly by change in Particle-TKN as other pollutants but its effect is thought to be masked by decrease of dissolved form of nitrogen due to the dilution.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.