• Title/Summary/Keyword: martensitic transformation

Search Result 115, Processing Time 0.036 seconds

Driving Forces for γ→ε Martensitic Transformation of Fe-Mn Alloys (Fe-Mn 합금의 γ→ε 마르텐사이트변태에 필요한 구동력)

  • Lee, Young-Kook;Choi, Chong-Sool
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.4
    • /
    • pp.243-251
    • /
    • 1996
  • Dilatometric experiment and thermodynamic calculation have been performed to determine $M_s$, $A_s$ and driving forces for ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation of Fe-Mn alloys. The transformation temperatures($M_s$, $A_s$, $T_o) were decreased with increasing manganese content and were newly formulated as a function of manganese content. Driving force for ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation was increased from -75J/mole to -105J/mole with increasing manganese content from 15wt.% to 25wt.%. Transformation temperature hysteresis($A_s-M_s$) was also increased from 50K to 80K with increasing mangenese content from 15wt.% to 25wt.%. The small driving force(-75J/mole~-105J/mole) and small ${\Delta}T$(50K~80K) for ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation indicated that Fe-Mn alloys behave like thermoelastic martensitic alloys : We would like to call them semi-thermoelastic martensitic alloys.

  • PDF

Kinetics of Athermal Martensitic Transformation in Yttria Doped Zirconia

  • Pee, Jae-Hwan;Choi, Eui-Seok;Hayakawa, Motozo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.718-721
    • /
    • 2005
  • The high temperature tetragonal phase of zirconia containing $1.40{\~}1.60\;mol\%$ of yttria can be fully retained at room temperature by rapid cooling. The metastable tetragonal phase transforms into the monoclinic phase athermally upon subzero cooling. The transformation exhibited an athermal burst transformation. The effects of yttria content and grain size on the athermal martensitic transformation were studied in detail. The burst temperature linearly decreased with increasing yttria content or decreasing grain size. To consider the distribution of martensite nuclei, the Weibull modulus of the athermal martensitic transformation was evaluated from the distribution of the burst transformation temperature. From the Weibull analysis, the distribution of embryos appears to be more homogeneous than that of the defects responsible for the fracture of similar material.

Study on the Martensitic Transformation Temperature and Morphology in Fe-27%Ni-0.27%C Alloy (Fe-27%Ni-0.27%C 합금의 마르텐사이트 변태온도와 형태에 관한 연구)

  • Shon, In-Jin;Kim, Hwan-Cheol;Kim, Hak-Shin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.3
    • /
    • pp.198-204
    • /
    • 1996
  • This work was carried out in order to investigate the effect of grain size on martensitic transformation temperature and morphology of Fe-27%Ni-0.27%C alloy. The martensitic transformation temperature was raised with increasing the austenitizing temperature within the range from $750^{\circ}C$ to $1200^{\circ}C$, owing to the grain growth, vacancy concentration. It was observed that the larger was the austenite grain, the higher was the martensitic transformation temperature. The influence of the austenite grain size was similar to that of the austenitizing temperature. The morphology of martensite in Fe-27%Ni-0.27%C alloy changed from lath to lenticular with the variation of grain size. From the above results, it was concluded that the martensitic transformation temperature and morphology was mainly dependent upon the austenite grain size.

  • PDF

The Effect of Electrolyte Types on the Electrochemical Polishing Induced Martensitic Transformation of Metastable Austenite Stainless Steel (전해액 종류에 따른 준안정 오스테나이트계 스테인리스강의 전해연마 유기 마르텐사이트 상변태에 미치는 영향)

  • J. Chae;C. Jeong;H. J. Cho;H. Lee;S. J. Kim;H. N. Han
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.191-198
    • /
    • 2023
  • We examined the martensitic transformation kinetics for metastable stainless steel during electrochemical polishing (EP) using different types of electrolytes. Martensite fraction measured with EBSD showed that the electrolyte with high relative permittivity exhibited comparably higher levels of martensitic transformation. The amount of charge build-up on the specimen surface during EP with different types of electrolytes was calculated using COMSOL multiphysics simulations to understand these phase transformation characteristics. The effect of charge build-up-induced stress was analyzed using previously published first-principles calculations. We discovered that the electrolyte with high relative permittivity accumulated a greater amount of charge build-up, resulting in a stronger driving force for stress-induced martensitic transformation.

Cold Rolling and Heat Treatment Characteristics of TiNi Based Shape Memory Wire (TiNi계 형상기억합금 선재의 냉간압연 및 열처리 특성)

  • Kim, R.H.;Kim, H.S.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.6
    • /
    • pp.251-257
    • /
    • 2017
  • The effect of annealing temperature on the martensitic transformation behavior, tensile deformation chracteristics and shape recovery etc., has been studied in TiNi based shape memory ribbon fabricated by coldrolling of wire. TiNi based shape memory wire (${\phi}=500{\mu}m$) of which structure is intermetallic compound could be cold-rolled without process annealing up to the reduction rate in thickness of 50%, but a few cracks appear in cold-rolled ribbon in the reduction rate in thickness of 65%. The $B2{\rightarrow}R{\rightarrow}B19^{\prime}$ martensitic transformation or $B2{\rightarrow}B19^{\prime}$ martensitic transformation occurs in annealing conditions dissipating lattice defects introduced by coldrolling. However, in case of higher reduction rate or lower annealing temperature, martensitic transformation in cold-rolled and then annealed ribbons does not occur. The maximum shape recovery rate of cold-rolled ribbons with the reduction rate of 35 and 65% could be achieved at annealing temperatures of 250 and $350^{\circ}C$, respectively. The shape recovery rate seems to be related to the stress level of plateau region on stress-strain curve.

Effect of the Cooling Rates on the Corrosion Resistance and Phase Transformation of 14Cr-3Mo Martensitic Stainless Steel

  • Park, Jee-Yong;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • Martensitic stainless steel is used when mechanical properties such as high tensile strength and hardness are required. Medium carbon-contained martensitic stainless steel which contains more than 0.2 wt% of carbon should be heat-treated and quenched at the temperature where undissolved carbides are totally dissolved into the matrix. In particular, the dissolution and reprecipitation behaviors of various forms of carbides are affected by such parameters as heating rate, heating temperature, duration time and cooling rate. This study is to investigate the effects of heat treatment parameters of 14Cr-3Mo martensitic stainless on corrosion resistance and phase transformation in relation to the dissolution and reprecipitation of carbides.

Ferromagnetic Resonance Observation of Martensitic Phase Transformation in Ni-Mn-Ga Ferromagnetic Shape Memory Films

  • Dubowik, J.;Kudryavtsev, Y.V.;Lee, Y.P
    • Journal of Magnetics
    • /
    • v.9 no.2
    • /
    • pp.37-39
    • /
    • 2004
  • Polycrystalline Ni-Mn-Ga films have been deposited onto mica substrates held at 720 K by flash-evaporation method. At room temperature the films have a tetragonal structure with a = b = 0.598 and c = 0.576 nm typical for bulk $Ni_2MnGa$ below a martensitic transformation. Temperature measurements of ferromagnetic resonance reveal a martensitic phase transformation at 310 K. The transformation brings about a substantial decrease in the effective magnetization and a drastic increase in the ferromagnetic resonance linewidth due to a strong increase in the magnetic anisotropy in the martensitic phase.

Effect of Prior Deformation on the Martensitic Transformation Temperature(Ms) and Reversed Martensitic Transformation Temperature(As) in Fe-Ni Alloy (Fe-Ni합금(合金)의 마르텐사이트변태온도(變態溫度)(Ms)와 역변태온도(逆變態溫度)(As)에 미치는 소성가공(塑性加工)의 영향(影響))

  • Shon, In-Jin;Nam, Kee-Seok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.4
    • /
    • pp.41-52
    • /
    • 1990
  • This research has been performed in order to investigate the effect of prior deformation on the Ms temperature and reversed As of Fe-Ni alloy. The Ms temperature rose with increment of strain to 30% but lowered over 50%. It can be analysed that martensitic transformation was promoted by partial dislocation in low strain, but suppressed by dislocation cell structures in high strain. The As temperature was substantially increased with higher deformation to 20% but slowly above 50%. It may be caused that as the transition bands formed by deformation constrained shear strain, therefore austenitic transformation was hindered.

  • PDF

Shape Memory Characteristics and Mechanical Properties of Rapidly Solidified $Ti_{50}Ni_{20}Cu_{30}$ Alloy Strips (급냉응고된 $Ti_{50}Ni_{20}Cu_{30}$ 합금 스트립의 형상기억특성과 기계적특성)

  • Kim, Yoen-Wook
    • Journal of Korea Foundry Society
    • /
    • v.29 no.5
    • /
    • pp.187-191
    • /
    • 2009
  • Microstructures and shape memory characteristics of $Ti_{50}Ni_{20}Cu_{30}$ alloy strips fabricated by arc melt overflow have been investigated by means of XRD, optical microscopy and DSC. The microstructure of as-cast strips exhibited columnar grains normal to the strip surface. X-ray diffraction analysis showed that one-step martensitic transformation of B2-B19 occurred in the alloy strips. According to the DSC analysis, it was known that the martensitic transformation temperature ($M_s$) of B2 $\rightarrow$ B19 in $Ti_{50}Ni_{20}Cu_{30}$ strip is $57^{\circ}C$. During thermal cyclic deformation with the applied stress of 60 MPa, transformation hysteresis and elongation associated with the B2-B19 transformation were observed to be $3.7^{\circ}C$ and 1.6%, respectively. The as-cast strip of $Ti_{50}Ni_{20}Cu_{30}$ alloy also showed a superelasticity and its stress hysteresis was as small as 14 MPa. These mechanical properties and shape memory characteristics of the alloy strips were ascribed to B2-B19 transformation and the controlled microstructures produced by rapid solidification of the arc melt overflow process.

Martensitic Transformation Behaviors of Gas Atomized Ti50Ni30Cu20 Powders (Gas atomization으로 제조된 Ti50Ni30Cu20 합금 분말의 상변태 거동)

  • Kim, Yoen-Wook;Chung, Young-Soo;Choi, Eun-Soo;Nam, Tae-Hyun;Im, Yeon-Min
    • Journal of Korea Foundry Society
    • /
    • v.31 no.1
    • /
    • pp.26-30
    • /
    • 2011
  • For the fabrication of bulk near-net-shape Ti-Ni-Cu shape memory alloys, consolidation of Ti-Ni-Cu alloy powders are useful because of their brittle property. In the present study, $Ti_{50}Ni_{30}Cu_{20}$ shape memory alloy powders were prepared by gas atomization and martensitic transformation temperatures and microstructures of those powders were investigated as a function of powder size. The size distribution of the powders was measured by conventional sieving, and sieved powders with the specific size range of 25 to $150\;{\mu}m$ were chosen for this examination. XRD analysis showed that the B2-B19 martensitic transformation occurred in the powders. In DSC curves of the as-atomized $Ti_{50}Ni_{30}Cu_{20}$ powders as a function of powder size, only one clear peak was found on each cooling and heating curve. The martensitic transformation start temperature($M_s$) of the $25-50\;{\mu}m$ powders was $31.5^{\circ}C$. The $M_s$ increased with increasing powder size and the difference of $M_s$ between $25-50\;{\mu}m$ powders and $100-150\;{\mu}m$ powders is only $1^{\circ}C$. The typical microstructure of the rapidly solidified powders showed cellular morphology and very small pores were observed in intercellular regions.