• Title/Summary/Keyword: marker - assisted selection

Search Result 213, Processing Time 0.025 seconds

Construction of an Integrated Pepper Map Using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC End Sequences

  • Lee, Heung-Ryul;Bae, Ik-Hyun;Park, Soung-Woo;Kim, Hyoun-Joung;Min, Woong-Ki;Han, Jung-Heon;Kim, Ki-Taek;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.21-37
    • /
    • 2009
  • Map-based cloning to find genes of interest, marker-assisted selection (MAS), and marker-assisted breeding (MAB) all require good genetic maps with high reproducible markers. For map construction as well as chromosome assignment, development of single copy PCR-based markers and map integration process are necessary. In this study, the 132 markers (57 STS from BAC-end sequences, 13 STS from RFLP, and 62 SSR) were newly developed as single copy type PCR-based markers. They were used together with 1830 markers previously developed in our lab to construct an integrated map with the Joinmap 3.0 program. This integrated map contained 169 SSR, 354 RFLP, 23 STS from BAC-end sequences, 6 STS from RFLP, 152 AFLP, 51 WRKY, and 99 rRAMP markers on 12 chromosomes. The integrated map contained four genetic maps of two interspecific (Capsicum annuum 'TF68' and C. chinense 'Habanero') and two intraspecific (C. annuum 'CM334' and C. annuum 'Chilsungcho') populations of peppers. This constructed integrated map consisted of 805 markers (map distance of 1858 cM) in interspecific populations and 745 markers (map distance of 1892 cM) in intraspecific populations. The used pepper STS were first developed from end sequences of BAC clones from Capsicum annuum 'CM334'. This integrated map will provide useful information for construction of future pepper genetic maps and for assignment of linkage groups to pepper chromosomes.

Construction of Genetic Linkage Map for Korean Soybean Genotypes using Molecular Markers

  • Jong Il Chung;Ye Jin Cho;Dae Jin Park;Sung Jin Han;Ju Ho Oh
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.4
    • /
    • pp.297-302
    • /
    • 2003
  • Genetic linkage maps serve the plant geneticist in a number of ways, from marker assisted selection in plant improvement to map-based cloning in molecular genetic research. Genetic map based upon DNA polymorphism is a powerful tool for the study of qualitative and quantitative traits in crops. The objective of this study was to develop genetic linkage map of soybean using the population derived from the cross of Korean soybean cultivar 'Kwangkyo, and wild accession 'IT182305'. Total 1,000 Operon random primers for RAPD marker, 49 combinations of primer for AFLP marker, and 100 Satt primers for SSR marker were used to screen parental polymorphism. Total 341 markers (242 RAPD, 83 AFLP, and 16 SSR markers) was segregated in 85 $\textrm{F}_2$ population. Forty two markers that shown significantly distorted segregation ratio (1:2:1 for codominant or 3:1 for domimant marker) were not used in mapping procedure. A linkage map was constructed by applying the computer program MAPMAKER/EXP 3.0 to the 299 marker data with LOD 4.0 and maximum distance 50 cM. 176 markers were found to be genetically linked and formed 25 linkage groups. Linkage map spanned 2,292.7 cM across all 25 linkage groups. The average linkage distance between pair of markers among all linkage groups was 13.0 cM. The number of markers per linkage group ranged from 2 to 55. The longest linkage group 3 spanned 967.4 cM with 55 makers. This map requires further saturation with more markers and agronomically important traits will be joined over it.

Application of RAPD Markers to Early Selection of Elite Individuals of Pinus Species for a Clonal Forest Tree Breeding Program (소나무류 육종에 있어 임의 증폭 다형 디엔에이(RAPD)지표를 이용한 우량 임목의 조기 선발)

  • Yi, Jae-Seon;Cheong, Eun-Ju;Moon, Heung-Kyu;Dale, Glenn T.;Teasdale, Robert D.
    • Journal of Forest and Environmental Science
    • /
    • v.11 no.1
    • /
    • pp.81-101
    • /
    • 1995
  • Random amplified polymorphic DNA (RAPD) technology, a recent approach in molecular genetics, is much usable to select the elite trees and to maximize the genetic gain in forest tree breeding program, providing a clue to determine the genetic marker-trait correlation. This review intorduces research on bark thickness and breeding strategy in Pinus elliottii, Pinus caribaea and their hybrid by Queensland Forest Service and ForBio Research Pty Ltd, University of Queensland, which employ RAPD technology. Genetic linkage map of $F_1$ hybrids includes 186 RAPD markers and 16 linkage groups (1641 cM long in total) and 6 quantitative trait loci are located putatively for bark thickness. Following recent research results and experiences in pine breeding programs, the forseeable stages in the application and development are proposed for marker assisted selectin; stage 1-determination of species specific markers for genes controlling traits of commercial interest, and stage 2-determination of marker-allele association for specific allelic variants within pure species. As pines inherit their megagametophytes from the seed parent and zygotic embryos from both male and female parents, the determination of marker-trait correlation is possible even in embryo stage, eventually making ways for the early selection of elite individuals.

  • PDF

Mapping of grain alkali digestion trait using a Cheongcheong/Nagdong doubled haploid population in rice

  • Kim, Hak Yoon;Kim, Kyung-Min
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.76-81
    • /
    • 2016
  • We performed a molecular marker-based analysis of quantitative trait loci for traits that determine the quality of appearance of grains using 120 doubled haploid lines developed by anther culture from the F1 cross between 'Cheongcheong' (Oryza sativa L. ssp. Indica) and 'Nagdong' (Oryza sativa L. ssp. Japonica). We therefore calculated the alkali digestion value (ADV), used to indirectly measure gelatinization temperature, to evaluate the quality of cooked rice in 2013 and 2014. The ADV score of frequency distribution was higher milled rice than brown rice. In total, nine different quantitative trait loci (QTLs) were found on 5 chromosomes in 2013 and 2014. Also, chromosome 5, 8 were detected over two years. We conclude that selected molecular markers from this QTL analysis could be exploited in future rice quality. In conclusion, we investigated ADV of brown and milled rice in CNDH population. This study found nine QTLs related to the ADV of brown and milled rice. The detected one marker can be used to select lines with desirable eating-quality traits because ADV is closely associated with the eating quality of cooked rice. Therefore, it will be useful to collect resources and distinguishable in many varieties for rice breeding program.

ISSR marker-assisted selection of male and female plants in a promising dioecious crop: jojoba (Simmondsia chinensis)

  • Sharma, Kuldeep;Agrawal, Veena;Gupta, Sarika;Kumar, Ravindra;Prasad, Manoj
    • Plant Biotechnology Reports
    • /
    • v.2 no.4
    • /
    • pp.239-243
    • /
    • 2008
  • Simmondsia chinensis (Link) Schneider, a multipurpose and monogeneric dioecious shrub from arid zones, has emerged as a cash crop all over the globe. Its seed propagation poses severe problems due to its male-biased population: the male:female ratio is 5:1. Investigations have been carried out to generate a sex-specific Inter-simple sequence repeat (ISSR) marker for the early detection of male and female plants. Of the 42 primers analysed with a bulk sample of pooled male DNA and a bulk sample of pooled female DNA, only one primer, UBC-807, produced a unique ~1,200 base-pair fragment in the male DNA. To validate this observation, this primer was re-tested with individual male and female samples from eight cultivars. A similar unique ~1,200 bp fragment was present in the male individuals of all eight cultivars and completely absent in the female individuals tested. This is the first report of the use of ISSR markers to ascertain sex in physiologically mature S. chinensis plants.

Development of a SNP marker set related to crown gall disease in grapevines by a genome wide association study

  • Kim, Dae-Gyu;Jang, Hyun A;Lim, Dong Jun;Hur, Youn Young;Lee, Kyo-Sang;Min, Jiyoung;Oh, Sang-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.693-705
    • /
    • 2020
  • Grapes (Vitis spp. L.) are the third most produced fruit in the world. Crown gall disease caused by Agrobacterium vitis forms galls in the stems of the grapevines and reduces the vitality of the fruit trees, resulting in reduced yields. This pathogen has occurred in vineyards worldwide and caused serious economic losses. It is a soil-borne disease, so Agrobacterium vitis can survive for several years in vineyards and is difficult to control. Additionally, since there is no effective chemical control method, the most effective control method is the breeding of resistant varieties. To make the resistant variety, marker-assisted selection (MAS) enables fast breeding with low cost. In this study, we applied a genome-wide association study (GWAS), by combining phenotyping and genotyping-by-sequencing (GBS), for the development of a single nucleotide polymorphism (SNP) marker set related to crown gall disease using 350 grapevine varieties. As a result of the GBS based genotyping analysis, about 58,635 SNPs were obtained. In addition, the phenotypic analysis showed 35.2% resistance, 73% moderate susceptibility and 16.4% highly susceptibility. Moreover, after confirmation, two genes (VvARF4 and VvATL6-like) were shown to be related to crown gall disease based on the results of GWAS analysis, using the phenotypic data, and GBS. High-resolution melting analysis (HRMA) was performed using the Luna® Universal Probe with real-time PCR to distinguish the melting peaks of the resistant and susceptible varieties. Our data show that these SNP markers are expected to be helpful in evaluating resistance against grapevine crown gall disease and in breeding.

Association of SNP Marker in the Thyroglobulin Gene with Carcass and Meat Quality Traits in Korean Cattle

  • Shin, S.C.;Chung, E.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.172-177
    • /
    • 2007
  • Thyroid hormones play an important role in regulating metabolism and can affect homeostasis of fat depots. The gene encoding thyroglobulin (TG), producing the precursor for thyroid hormones, has been proposed as a positional and functional candidate gene for a QTL with an effect on fat deposition. The SNP occurs in the 5' promoter region of the TG gene and is widely used in marker assisted selection (MAS) programs to improve the predictability of marbling level and eating quality in beef cattle. In this study, we identified three SNPs at the 5' promoter region of the TG gene in Korean cattle. Of the three SNPs identified in TG gene, the C257T and A335G were previously unreported new SNPs. The sequence data were submitted to GenBank (GenBank accession number: AY615525). The previously reported C422T SNP showed three genotypes, CC, CT and TT, by digestion with the restriction enzyme MflI using the PCR-RFLP method. A new allelic variant corresponding to the C${\rightarrow}$T and A${\rightarrow}$G mutations at positions 257 and 335, respectively, could be detected by the SSCP analysis. The gene-specific SNP marker association analysis indicated that the C422T SNP marker was significantly associated (p<0.05) with marbling score. Animals with the CC and CT genotypes had higher marbling score than those with the TT genotype. Results from this study suggest that TG gene-specific SNP may be a useful marker for meat quality traits in future MAS programs in Korean cattle.

Application of the Molecular Marker in Linkage Disequilibrium with Ms, a Restorer-of-fertility Locus, for Improvement of Onion Breeding Efficiency

  • Kim, Sujeong;Kim, Sunggil
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.550-558
    • /
    • 2015
  • To analyze the linkage relationships among molecular markers recently reported to be linked to onion (Allium cepa L.) Ms, a restorer-of-fertility locus, in onion (Allium cepa L.), three single nucleotide polymorphism markers were converted into cleaved amplified polymorphic sequence (CAPS) markers based on onion transcriptome sequences and the rice genome database. Analysis of the recombinants selected from 4,273 segregating plants using CAPS and other linked markers demonstrated the jnurf13 and jnurf610 markers to perfectly co-segregate with the Ms locus. In contrast to jnurf13, the jnurf610 marker was not in perfect linkage disequilibrium with the Ms locus in diverse breeding lines. Thus, the jnurf13 marker and the marker for identification of cytoplasm types were utilized to enhance the efficiency of onion breeding through four applications. First, 89 maintainer lines containing the normal cytoplasm and homozygous recessive Ms genotypes were successfully identified from 100 breeding lines. Second, these two molecular markers were used to analyze the main sources of male-fertile contaminants frequently found in the male-sterile parental lines during F1 hybrid seed production. The majority of the contaminants contained heterozygous Ms genotypes, indicating that pollen grains harboring the dominant Ms genotype may have been introduced during propagation of the maintainer lines. Therefore, the genetic purity of the two maintainer lines was analyzed in the third application, and the results showed that both maintainer lines contained 13-21% off-types. Finally, the two markers were used to increase the seed yield potentials of two open-pollinated varieties containing sterile cytoplasms by removing the plants harboring homozygous recessive and heterozygous Ms genotypes.

Quantitative Trait Loci for Stem Length in Soybean Using a Microsatellite Markers (콩에서 Microsatellite 마커를 이용한 양적형질 유전자의 분석)

  • Kim, Hyeun-Kyeung;Kang, Sung-Taeg;Kong, Hyeun-Jong;Park, In-Soo
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.339-344
    • /
    • 2004
  • Identification of individual quantitative trait loci (QTL) is a prerequisite to application of marker-assisted selection for stern length. Two simple sequence repeat (SSR)-based linkage maps were constructed from recombination inbred line populations between cross of Keunolkong and Shinpaldalkong. Two parents used differed greatly in stem length, which were 30.57 cm and 49.75 cm in Keunolkong and Shinpaldalkong, respectively. Using the constructed maps, regression analysis and interval mapping were performed to identify QTLs conferring stem length. Four QTLs for stem length on linkage groups (LG) F, J, N and O were identified in the Keunolkong ${\times}$ Shinpaldalkong population and they totally explained 37.83% of variation for stem length. In the population, two major QTLs on LG J and O conditioning 14.25% and 10.68% of the phenotypic variation in stem length were determined and two QTLs with minor effect were detected on LG F and N. Identification of QTLs for stem length and mapping individual locus should facilitate to describe genetic mechanisms for stem length in different population. SSR markers tightly linked to QTLs for stem length allow to accelerate the elimination of deleterious genes and selection for desirable recombinants at early stage in crop breeding programs.

Evaluation of Germplasm and Development of SSR Markers for Marker-assisted Backcross in Tomato (분자마커 이용 여교잡 육종을 위한 토마토 유전자원 평가 및 SSR 마커 개발)

  • Hwang, Ji-Hyun;Kim, Hyuk-Jun;Chae, Young;Choi, Hak-Soon;Kim, Myung-Kwon;Park, Young-Hoon
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.557-567
    • /
    • 2012
  • This study was conducted to achieve basal information for the development of tomato cultivars with disease resistances through marker-assisted backcross (MAB). Ten inbred lines with TYLCV, late blight, bacterial wilt, or powdery mildew resistance and four adapted inbred lines with superior horticultural traits were collected, which can be useful as the donor parents and recurrent parents in MAB, respectively. Inbred lines collected were evaluated by molecular markers and bioassay for confirming their disease resistances. To develop DNA markers for selecting recurrent parent genome (background selection) in MAB, a total of 108 simple sequence repeat (SSR) primer sets (nine per chromosome at average) were selected from the tomato reference genetic maps posted on SOL Genomics Network. Genetic similarity and relationships among the inbred lines were assessed using a total of 303 polymorphic SSR markers. Similarity coefficient ranged from 0.33 to 0.80; the highest similarity coefficient (0.80) was found between bacterial wilt-resistant donor lines '10BA333' and '10BA424', and the lowest (0.33) between a late blight resistant-wild species L3708 (S. pimpinelliforium L.) and '10BA424'. UPGMA analysis grouped the inbred lines into three clusters based on the similarity coefficient 0.58. Most of the donor lines of the same resistance were closely related, indicating the possibility that these lines were developed using a common resistance source. Parent combinations (donor parent ${\times}$ recurrent parent) showing appropriate levels of genetic distance and SSR marker polymorphism for MAB were selected based on the dendrogram. These combinations included 'TYR1' ${\times}$ 'RPL1' for TYLCV, '10BA333' or '10BA424' ${\times}$ 'RPL2' for bacterial wilt, and 'KNU12' ${\times}$ 'AV107-4' or 'RPL2' for powdery mildew. For late blight, the wild species resistant line 'L3708' was distantly related to all recurrent parental lines, and a suitable parent combination for MAB was 'L3708' ${\times}$ 'AV107-4', which showed a similarity coefficient of 0.41 and 45 polymorphic SSR markers.