Browse > Article
http://dx.doi.org/10.7235/hort.2012.12032

Evaluation of Germplasm and Development of SSR Markers for Marker-assisted Backcross in Tomato  

Hwang, Ji-Hyun (Department of Horticultural Bioscience, Pusan National University)
Kim, Hyuk-Jun (Department of Horticultural Bioscience, Pusan National University)
Chae, Young (National Institute of Horticulture & Herbal Science)
Choi, Hak-Soon (National Institute of Horticulture & Herbal Science)
Kim, Myung-Kwon (Tomato Life Science & Research Center)
Park, Young-Hoon (Department of Horticultural Bioscience, Pusan National University)
Publication Information
Horticultural Science & Technology / v.30, no.5, 2012 , pp. 557-567 More about this Journal
Abstract
This study was conducted to achieve basal information for the development of tomato cultivars with disease resistances through marker-assisted backcross (MAB). Ten inbred lines with TYLCV, late blight, bacterial wilt, or powdery mildew resistance and four adapted inbred lines with superior horticultural traits were collected, which can be useful as the donor parents and recurrent parents in MAB, respectively. Inbred lines collected were evaluated by molecular markers and bioassay for confirming their disease resistances. To develop DNA markers for selecting recurrent parent genome (background selection) in MAB, a total of 108 simple sequence repeat (SSR) primer sets (nine per chromosome at average) were selected from the tomato reference genetic maps posted on SOL Genomics Network. Genetic similarity and relationships among the inbred lines were assessed using a total of 303 polymorphic SSR markers. Similarity coefficient ranged from 0.33 to 0.80; the highest similarity coefficient (0.80) was found between bacterial wilt-resistant donor lines '10BA333' and '10BA424', and the lowest (0.33) between a late blight resistant-wild species L3708 (S. pimpinelliforium L.) and '10BA424'. UPGMA analysis grouped the inbred lines into three clusters based on the similarity coefficient 0.58. Most of the donor lines of the same resistance were closely related, indicating the possibility that these lines were developed using a common resistance source. Parent combinations (donor parent ${\times}$ recurrent parent) showing appropriate levels of genetic distance and SSR marker polymorphism for MAB were selected based on the dendrogram. These combinations included 'TYR1' ${\times}$ 'RPL1' for TYLCV, '10BA333' or '10BA424' ${\times}$ 'RPL2' for bacterial wilt, and 'KNU12' ${\times}$ 'AV107-4' or 'RPL2' for powdery mildew. For late blight, the wild species resistant line 'L3708' was distantly related to all recurrent parental lines, and a suitable parent combination for MAB was 'L3708' ${\times}$ 'AV107-4', which showed a similarity coefficient of 0.41 and 45 polymorphic SSR markers.
Keywords
Erysiphe cichoracearum; foreground selection; microsatellite marker; Phytophthora infestans; Ralstonia solanacearum;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Babu, R., S.K. Nair, A. Kumar, S. Venkatesh, J.C. Sekhar, N.N. Singh, G. Srinivasan, and H.S. Gupta. 2005. Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). Theor. Appl. Genet. 111:888-897.   DOI   ScienceOn
2 Bai, Y., C.C. Huang, R. Hulst, F. Meijer-Dekens, G. Bonnema, and P. Lindhout. 2003. QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two quantitative powdery mildew resistance genes. Mol. Plant Microbe Interact. 16:169-176.   DOI
3 Barone, A. 2004. Molecular marker-assisted selection for potato breeding. Amer. J. Potato Res. 81:111-117.   DOI
4 Behera, T.K., J.E. Staub, S. Behera, I.Y. Deannay, and J.F. Chen. 2011. Marker-assisted backcross selection in an interspecific Cucumis population broadens the genetic base of cucumber (Cucumis sativus L.). Euphytica 178:261-272.   DOI
5 Benor, S., M. Zhang, Z. Wang, and H. Zhang. 2008. Assessment of genetic variation in tomato (Solanum lycopersicum L.) inbred lines using SSR molecular markers. J. Genet. Genomics 35:373-379.   DOI
6 Botstein, D., R.L. White, M. Skolnick, and R.W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314-331.
7 Carmeille, A., C. Caranta, J. Dintinger, P. Prior, J. Luisetti, and P. Besse. 2006. Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theor. Appl. Genet. 113:110-121.   DOI
8 Cho, Y.G., M.Y. Eun, S.R. McCouch, and Y.A. Chae. 1994. The semiwarf gene, sd-1 or rice (Oryza sativa L.). II: Molecular mapping and marker-assisted selection. Theor. Appl. Genet. 89:54-59.
9 Collard, B.C.Y. and D.J. Mackill. 2008. Marker-assisted selection: An approach for precision plant breeding in the 21st century. Phil. Trans. Royal. Soc. B. Rev. 363:557-572   DOI
10 Fazio, G., S.M. Chung, and J.E. Staub. 2003. Comparative analysis of response to phenotypic and marker-assisted selection for multiple lateral branching in cucumber (Cucumis sativus L.). Theor. Appl. Genet. 107:875-883.   DOI
11 Food and Agriculture Organization of the United Nations (FAO) 2008. Food and agricultural commodities production. http://www.fao.org/
12 Foolad, M.R. 2007. Genome mapping and molecular breeding of tomato. Int. J. Plant Genomics Article ID 64358.
13 Fulton, T.M., R. van der Hoeven, N.T. Eannetta, and S.D. Tanksley. 2002. Identification, analysis and utilization of a conserved ortholog set (COS) markers for comparative genomics in higher plants. Plant Cell 14:1457-1467.   DOI
14 Gonzalo, M.J. and E. van der Knaap. 2008. A comparative analysis into the genetic bases of morphology in tomato varieties exhibiting elongated fruit shape. Theor. Appl. Genet. 116:647-656.   DOI
15 Herzog, E. and M. Frisch. 2011. Selection strategies for markerassisted backcrossing with high-throughput marker systems. Theor. Appl. Genet. 123:251-260.   DOI
16 He, C., V. Poysa, and K. Yu. 2003. Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor. Appl. Genet. 106:363-373.
17 Hospital, F., C. Chevalet, and P. Mulsant. 1992. Using markers in gene introgression breeding programs. Genetics 132:1199-1210.
18 Hospital, F. 2001. Size of donor chromosome segments around introgressed loci and reduction of linkage drag in markerassisted backcross programs. Genetics 158:1363-1379.
19 Hwang, J.H., S.G. Ahn, J.Y. Oh, Y.W. Choi, J.S. Kang, and Y.H. Park. 2011. Functional characterization of watermelon (Citrullus lanatus L.) EST-SSR by gel electrophoresis and high resolution melting analysis. Sci. Hort. 130:715-724.   DOI
20 Iftekharuddaula, K.M., M.A. Newaz, M.A. Salam, H.U. Ahmed, M.M.A Mahbub, E.M. Septiningsih, B.C.Y. Collard, D.L Sanchez, A.M. Pamplona, and D.J. Mackill. 2011. Rapid and high-precision marker assisted backcrossing to introgress the SUB1 QTL into BR11, the rainfed lowland rice mega variety of Bangladesh. Euphytica 178:83-97.   DOI
21 Jeong, Y., J. Kim, Y. Kang, S. Lee, and I. Hwang. 2007. Genetic diversity and distribution of Korean isolates of Ralstonia solanacearum. Plant Dis. 91:1277-1287.   DOI
22 Kim, B.S. 2012. Evaluation of tomato genetic resources for the development of resistance breeding lines against late blight. Res. Plant Dis. 18:35-39.   과학기술학회마을   DOI   ScienceOn
23 Kim, W.I., B.J. Lee, J.Y. Oh, H.S. Lee, G.M. Shon, C.W. Rho, C.S. Lim, J.H. Ha, Y.H. Park, and Y.B. Kim. 2010. Selection of tomato yellow leaf curl virus (TYLCV) resistant cultivar and fruit quality in tomato. Kor. J. Hort. Sci. Technol. 28 (Suppl. II):55-56. (Abstr.)
24 Korean Seed Association (KOSA). 2012. Import and export present condition. http://kosaseed.co.kr
25 Korean Statistical Information Service (KOSIS). 2010. Survey of cultivation, survey of farm production. http://kosis.kr
26 Levinson, G. and G.A. Gutman. 1987. Slipped-Strand mispairing: A major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4:203-221.
27 Lee, H.J., E.J. Jo, N.H. Kim, Y. Chae, and S.W. Lee. 2011. Disease responses of tomato pure lines against Ralstonia solanacearum strains from Korea and susceptibility at high temperature. Res. Plant Dis. 17:326-333.   과학기술학회마을   DOI
28 Neeraja, C.N., R. Rodriguez-Maghirang, A. Pamplona, S. Heuer, B.C.Y. Collard, E.M. Septiningsih, G. Vergara, D. Sanchez, K. Xu, A.M. Ismail, and D.J. Mackill. 2007. A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor. Appl. Genet. 115:767-776.   DOI
29 Nei, M. and W.H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U.S.A. 76:5269-5273.   DOI   ScienceOn
30 Oliveira, L.K., L.C. Melo, C. Brondani, M.J.D. Peloso and R.P.V. Brondani. 2008. Backross assisted by microsatellite markers in common bean. Genet. Mol. Res. 7:1000-1010.   DOI
31 Park, P.H., Y. Chae, H.R. Kim, K.H. Chung, D.G. Oh, and K.T. Kim. 2010a. Development of a SCAR maker linked to Ph-3 in Solanum ssp. Korean J. Breed. Sci. 42:139-143.
32 Park, Y.H., K.H. Kim, Y.M. Choi, H.S. Choi, Y. Chae, K.S. Park, and S.M. Chung. 2010b. Evaluation of TYLCV-resistant tomato germplasm using molecular markers. Kor. J. Hort. Sci. Technol. 28:89-97.   과학기술학회마을
33 Prigge, V., A.E. Melchinger, B.S. Dhillon, and M. Frisch. 2009. Efficiency gain of marker-assisted backcrossing by sequentially increasing marker densities over generations. Theor. Appl. Genet. 119:23-32.   DOI
34 Rohlf, F.J. 2002. NTSYS-pc: numerical taxonomy system, ver. 2.1. Exeter Publishing Ltd., Setauket, NY.
35 Ribuat, J.M. and M. Ragot. 2007. Marker-assisted selection to improve drought adaptation in maize: The backcross approach, perspectives, limitations, and alternatives. J. Exp. Bot. 58:351-360.
36 Servin, B. and F. Hospital. 2002. Optimal positioning of markers to control genetic background in marker-assisted backcrossing. J. Hered. 93:214-217.   DOI
37 Sokal, R. and C. Michener. 1958. A statistical method for evaluating systematic relationships. Univ. Kansas. Sci. Bull. 38:1409-1438.
38 Stam, P. and A.C. Zeven. 1981. The theoretical portion of the donor genome in near-isogenic lines of self-fertilizers bred by backcrossing. Euphytica 30:227-238.   DOI
39 Tanksley, S.D., N.D. Young, A.H. Patterson, and M.W. Bonierbale. 1989. RFLP mapping in plant breeding: New tools for an old science. Bio. Technol. 7:257-264.   DOI
40 Wang, J., J. Oliver, P. Thoquet, B. Mangin, L. Sauviac, and N.H. Grimsley. 2000. Resistance of tomato line Hawaii7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Mol. Plant Microbe Interact. 13:6-13.   DOI
41 Yang, W. and D.M. Francis. 2005. Marker-assisted selection for combining resistance to bacterial spot and bacterial speck in tomato. J. Amer. Soc. Hort. Sci. 130:716-721.