• Title/Summary/Keyword: marine surface films

Search Result 37, Processing Time 0.027 seconds

Characteristics of Coating Films on Hot-Dipped Aluminized Steel Formed by Plasma Electrolytic Oxidation Process at Different Current Densities (PEO 전류밀도 조건에 따른 알루미늄도금 강재상 산화코팅막의 특성)

  • Choi, In-Hye;Lee, Hoon-Seung;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.366-372
    • /
    • 2017
  • Plasma electrolytic oxidation(PEO) has attracted attention as a surface treatment which has high wear resistance and corrosion resistance. PEO is generally considered as cost-effective, environmentally friendly and superior in terms of coating performance. Most of studies about the PEO processes have been applied to light metals such as Al and Mg. Because the strength of Al and Mg is weaker than that of steel, there is a limit to the application. In this study, PEO process was used to form oxide coatings on Hot dipped aluminized(HDA) steel and the characteristics of the coating film according to the PEO current density were studied. The morphology was observed by SEM and component was analyzed by using EDS. The corrosion behaviors of PEO coating films were estimated by exposing salt spray test at 5 wt.% NaCl solution and measuring polarization curves in deaerated 3 wt.% NaCl solution. With the increase of PEO process current density, the pore size of the coating surface and the thickness of coating increased. It was confirmed that no Fe component was present on the coating surface. PEO coating films obviously showed good corrosion resistance compared with HDA. It is considered that the PEO coating acts as a barrier to protect the base material from external factors causing corrosion.

Formation and Control of Calcium Carbonate Films having Aragonite Crystal Structure by Electro-Chemical Process (전기화학적 프로세스에 의한 아라고나이트 결정구조 탄산칼슘 막의 형성 및 제어)

  • Lee, Seung-Hyo;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.325-331
    • /
    • 2018
  • Calcium carbonate($CaCO_3$) films were formed by an eco-friendly electro-chemical technique on steel substrates in synthesized distilled water solutions containing $NaHCO_3$, $CaCl_2$ and $MgCl_2$ with different ratio respectively. It was investigated to confirm the effect of $Mg^{2+}$ concentration by Scanning Electron Microscopy(SEM), Energy Dispersive x-ray Spectroscopy(EDS) and X-Ray Diffraction(XRD) respectively. From an experimental result, only calcite crystals were found in solution containing no $Mg^{2+}$. By increasing concentration of $Mg^{2+}$, deposition rate decreased and crystal structure was transformed form calcite to aragonite. In case of including $MgCl_2$ 300mM in synthesized solutions containing $NaHCO_3$, $CaCl_2$ 60mM, it was showed over the 90% of aragonite contents which have quite high deposition rate of aragonite. Also, it was confirmed that $Mg^{2+}$ acted as inhibitor on the films which made transforming from calcite to aragonite.

Substrate Temperature Dependence of Microcrystalline Silicon Thin Films by Combinatorial CVD Deposition

  • Kim, Yeonwon
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.3
    • /
    • pp.126-130
    • /
    • 2015
  • A high-pressure depletion method using plasma chemical vapor deposition (CVD) is often used to deposit hydrogenated microcrystalline silicon (${\mu}c-Si:H$) films of a low defect density at a high deposition rate. To understand proper deposition conditions of ${\mu}c-Si:H$ films for a high-pressure depletion method, Si films were deposited in a combinatorial way using a multi-hollow discharge plasma CVD method. In this paper the substrate temperature dependence of ${\mu}c-Si:H$ film properties are demonstrated. The higher substrate temperature brings about the higher deposition rate, and the process window of device quality ${\mu}c-Si:H$ films becomes wider until $200^{\circ}C$. This is attributed to competitive reactions between Si etching by H atoms and Si deposition.

Properties Analysis of Environment Friendly Coating Films Formed by Using Electrodeposition Principle on Seawater (해수환경중 전착원리에 의해 형성시킨 환경친화적인 코팅막의 특성 분석)

  • Baek, S.M.;Lee, C.S.;Kim, K.J.;Moon, K.M.;Lee, M.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.196-197
    • /
    • 2005
  • Cathodic protection is one of the successful ways to prevent corrosion of steel structures in marine environments. The unique feature of cathodic protection in seawater is the formation of calcareous deposits on cathodic metal surface. The formation principles of calcareous deposit seawater had been known for a long time. That is, cathodic reduction reactions associated with cathodic protection in seawater generate $OH^-$ at the metal surface in accordance with the formular ; 1/2 $O_2$ + $H_2O$ + $2e^-$ $2OH^-$ and $2H_2O$ + $2e^-$ ${\rightarrow}$ $H_2$ + $2OH^-$. These reactions increase the pH at the metal / seawater interface. The high pH causes precipitation of $Mg(OH)_2$ and $CaCO_3$ in accordance with the formular ; $Mg^{2+}$ + $2(OH)^-$ ${\rightarrow}$ $Mg(OH)_2$ and $Ca^{2+}$ + $HCO_3^-$ + $OH^-$ ${\rightarrow}$ $H_2O$ + $CaCO_3$. These are typically the main compounds in calcareous deposits. It obviously has several advantages compared to the conventional coatings, since the environment-friendly calcareous deposit coating is formed by the elements($Mg^{2+}$, $Ca^{2+}$) naturally present in seawater. In this study, environmental friendly calcareous deposit films were prepared on steel plates by electro plating technic in natural seawater. The influence of current density on composition ratio, structure and morphology of the coated films were investigated by scanning electron microscopy formation process of calcareous deposits films in natural seawater. And we confirmed the properties of all the films can be improved greatly by controlling the material structure and morphology with effective use of the electroplating method in natural seawater.

  • PDF

Preparation of Bio-degradable Films Using Various Marine Algae Powder (해조분말을 이용한 생분해성 필름의 제조)

  • Rhim, Jong-Whan;Kim, Ji-Hye
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.69-74
    • /
    • 2004
  • 'Mixing' and 'immersion' $CaCl_{2}$ treatment methods were tested for preparation of bio-degradable films using powders of sea mustard (Undaria pinnatifida) (leaf, stem, and sphorophyll), sweet tanlge (Laminaria japonica), and fusiforme (Hizikia fusiforme) by extracting alginate through acid-alkali extraction method. Except fusiforme powder, flexible, free-standing films were produced by both methods using all marine algae powders tested. Except water solubility (WS), surface color, tensile strength (TS), elongation at break (E), and water vapor permeability (WVP) did not show distinct difference between $CaCl_{2}$, treatment methods. Although TS, WVP, and WS of marine algae powder films were lower than those of alginate films, they indicate potential in application as a new source of bio-degradable packaging materials.

Effects of Si cluster incorporation on properties of microcrystalline silicon thin films

  • Kim, Yeonwon;Yang, Jeonghyeon;Kang, Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.181-181
    • /
    • 2016
  • Hydrogenated microcrystalline silicon (${\mu}c-Si:H$) films have attracted much attention as materials of the bottom-cells in Si thin film tandem photovoltaics due to their low bandgap and excellent stability against light soaking. However, in PECVD, the source gas $SiH_4$ must be highly diluted by $H_2$, which eventually results in low deposition rate. Moreover, it is known that high-rate ${\mu}c-Si:H$ growth is usually accompanied by a large number of dangling-bond (DB) defects in the resulting films, which act as recombination centers for photoexcited carriers, leading to a deterioration in the device performance. During film deposition, Si nanoparticles generated in $SiH_4$ discharges can be incorporated into films, and such incorporation may have effects on film properties depending on the size, structure, and volume fraction of nanoparticles incorporated into films. Here we report experimental results on the effects of nonoparticles incorporation at the different substrate temperature studied using a multi-hollow discharge plasma CVD method in which such incorporation can be significantly suppressed in upstream region by setting the gas flow velocity high enough to drive nanoparticles toward the downstream region. All experiments were performed with the multi-hollow discharge plasma CVD reactor at RT, 100, and $250^{\circ}C$, respectively. The gas flow rate ratio of $SiH_4$ to $H_2$ was 0.997. The total gas pressure P was kept at 2 Torr. The discharge frequency and power were 60 MHz, 180 W, respectively. Crystallinity Xc of resulting films was evaluated using Raman spectra. The defect densities of the films were measured with electron spin resonance (ESR). The defect density of fims deposited in the downstream region (with nonoparticles) is higher defect density than that in the upstream region (without nanoparticles) at low substrate temperature of RT and $100^{\circ}C$. This result indicates that nanoparticle incorporation can change considerably their film properties depending on the substrate temperature.

  • PDF

Formation of Calcareous Deposit on Steel Plate by using Waste Oyster Shell (강판상에 굴 패각을 이용한 탄산칼슘 피막의 형성)

  • Kim, Beomsoo;Kwon, Jaesung;Kim, Yeonwon;Lee, Myeonghoon;Yang, Jeonghyeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.531-535
    • /
    • 2017
  • Enormous amount of waste oyster-shell (OS) has a major disposal problem in coastal regions. OSs have attracted much attention for recycling, because these are mainly composed of calcium carbonate with rare impurities. In this study, we demonstrate the calcareous deposit films on steel plate by using OSs on the basic of cathodic protection technique. The composition of the OSs was analyzed by wavelength dispersive X-ray fluorescence spectrometer. Carbon dioxide gas was pumped into distilled water to make carbonic acid solution for dissolution of OS. The calcareous deposit was characterized by second electron microscope (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction. Corrosion rates were estimated by measurements of anodic polarization and immersion test. It is confirmed that calcareous deposits on steel plate are formed under all condition of cathodic protection by using waste OS from the SEM and EDX results. Calcareous deposits on steel by OS provide good corrosion resistance by acting as a barrier to oxygen supply to the steel surface.

Preparation of Al-Sn Coating Bearings by RF Sputtering Method and Evaluation of Their Properties (RF 스퍼터링법에 의한 Al-Sn계 코팅베어링의 제작과 특성 평가)

  • 이찬식;이명훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.139-146
    • /
    • 2000
  • The development of high performance materials is very important subject in order to enhance the properties of bearings whose role is to transfer energy harmoniously by reducing the problem of friction and wear down, etc. between the interacting solid surfaces in relative motion under high loads in comply with mechanical operating mechanism of engines. In this study, several (100-x)Al-xSn coating films (where x=85, 75, 65 atomic % at Al) on substrates which are abt. 2mm thickenss of Kelmet layer sintered back steel were prepared by using RF sputtering system. These coating films were observed the morphology by SEM(Scanning Electron Microscope) and investigated the crystal structure by XRD(X-ray Diffractor) for their properties. And friction coefficient of these films was measured by ball-on-disc tester for their tribological properties. From the experimental results, it was shown that high performance properties of bearing can be improved greatly by controlling the composition and morphology of material surface with effective use of the plasma-assisted sputtering process.

  • PDF

The structural characteristics of ZnO thin films for TFT driver circuit (박막트랜지스터 구동회로용 ZnO 박막의 구조적 특성에 관한 연구)

  • Son, Jihoon;Kim, Sanghyun;Kim, Hongseung;Jang, Nakwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.72-77
    • /
    • 2013
  • The effect of sputtering condition on the structural properties of ZnO thin films grown by RF magnetron sputtering system was investigated for TFT driver circuit. ZnO thin films were grown with ZnO target varying RF power and working pressure. Structural properties were investigated by X-ray diffraction (XRD) and atomic force microscope (AFM). The ZnO thin films have sufficient crystallinity on the 100W RF power. But, the surface roughness of ZnO films was increased as increased RF power. As increased working pressure from 5 mTorr to 15 mTorr, a full width at half maximum (FWHM) of ZnO (002) peak was increased.

Effect of Current Density on Porous Film Formation in Two-Step Anodizing for Al Alloy

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.125-129
    • /
    • 2016
  • Anodizing is a technology to generate thicker and high-quality films than natural oxide films by treating metals via electrochemical methods. Electrochemical manufacturing method of nano structure is an efficient technology in terms of cost reduction, high productivity and complicated shapes, which receives the spotlight in diverse areas. Especially, artificial films generated by anodizing technology possess excellent mechanical characteristics including hardness and wear resistance. It is also easy to modify thickness and adjust shape of those artificial films so that they are mainly used in sensors, filters, optical films and electrolytic condensers. In this study, experiment was performed to observe the effect of current density on porous film formation in two-step anodizing for Al alloy. Anodizing process was performed with 10 vol.% sulfuric acid electrolyte while the temperature was maintained at $10^{\circ}C$ using a double beaker. and $10{\sim}30mA/cm^2$ was applied for 40 minutes using a galvanostatic method. As a result, both pore diameters and distances between pores tended to increase as the local temperature and electrolysis activity increased due to the increase in applied current density.