• Title/Summary/Keyword: marine diesel engine

Search Result 574, Processing Time 0.031 seconds

Speed Control of a Diesel Engine by Means of the Model Matching Method (모델 맷칭법에 의한 디젤기관의 속도제어)

  • 유희환;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.131-137
    • /
    • 1996
  • The existing digital governors are in the beginning stage. Placing the focus on the marine site, most of the digital governors developed are still using the simple PID algorithm. But, the performance of a diesel engine is widely changed according to the parameters of the PID controller. So, this article describes a new method to adjust the parameters of the PID controller in a marine digital governor. In this paper, the diesel engine is considered as a nonoscillatory second order system. A new method to adjust the parameters of the PID controller for speed control of a diesel engine is proposed by means of the model matching method. Also, the simulations by numerical methods are carried out in cases of the exact understanding or out of the parameters of a diesel engine respectively. And this paper confirms that the proposed new method here is superior to Ziegler & Nichols's method through the comparisons and analysis of the characteristics of indicial responses.

  • PDF

Theoretical Analysis on Transient Torsional Vibrations of Two Stroke Low Speed Diesel Engines

  • Lee, Don-Chool;Kim, Sang-Hwan;Yu, Jung-Dae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.207-214
    • /
    • 2007
  • Theoretical analysis on transient torsional vibration was started from the early 1960s for high power synchronous motor application. Particularly. its simulation and measuring techniques in marine diesel engine field have been steadily studied by some classification societies and large marine diesel engine designers. This paper introduces the simulation method on transient torsional vibration of two stroke low speed diesel engine using the Newmark method.

The prediction of Performance in Two-Stroke Large Marine Diesel Engine Using Double-Wiebc Combustion Model (2중 Wiebe 연소모델을 이용한 2행정 대형 선박용 디젤엔진의 성능예측)

  • 김태훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.637-653
    • /
    • 1999
  • In this study well-known burned rate expressions of Weibe function and double Wiebe function have been adopted for the combustion analysis of large two stroke marine diesel engine. A cycle simulation program was also developed to predict the performance and pressure waves in pipes using validated burned rate function,. Levenberg-Marquardt iteration method was applied to cali-brate the shape coefficients included in double Wiebe function for the performance prediction of two-stroke marine diesel engine. As a result the performance prediction using double Wiebe func-tion is well correlated withexperimental dta with the accuracy of 5% and pressure waves in intake and transport pipe are well predicted. From the results of this study it can be confirmed that the shape coefficients of burned rate function should be modified using the numerical method suggested for the accurated prediction and double Wiebe function is more suitable than Wiebe func-tion for combustion analysis of large two stroke marine engine.

  • PDF

Simulation of a two-stroke diesel engine for propulsion in waves

  • Yum, Kevin Koosup;Taskar, Bhushan;Pedersen, Eilif;Steen, Sverre
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.351-372
    • /
    • 2017
  • Propulsion in waves is a complex physical process that involves interactions between a hull, a propeller, a shaft and a prime mover which is often a diesel engine. Among the relevant components, the diesel engine plays an important role in the overall system dynamics. Therefore, using a proper model for the diesel engine is essential to achieve the reasonable accuracy of the transient simulation of the entire system. In this paper, a simulation model of a propulsion system in waves is presented with emphasis on modeling a two-stroke marine diesel engine: the framework for building such a model and its mathematical descriptions. The models are validated against available measurement data, and a sensitivity analysis for the transient performance of the diesel engine is carried out. Finally, the results of the system simulations under various wave conditions are analyzed to understand the physical processes and compare the efficiency for different cases.

An Experimental Study for Integrated Vibration Monitoring System Development in Marine Diesel Engine (선박용 디젤 엔진의 종합 진동 모니터닝 시스템 개발을 위한 실험적인 연구)

  • Lee, D.C.;Joo, K.S.;Nam, T.K.;Kim, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.880-885
    • /
    • 2007
  • Diesel engines have been widely used in ships and power plants because of its higher thermal efficiency, mobility and durability compared to other prime movers. Though these merits, diesel engine including main components are sometimes vibrated due to higher combustion pressure in cylinders. Especially torsional, axial and structural vibrations in propulsion shafting may be severely manifested by the malfunction of torsional and axial dampers and misfiring and unbalanced load in cylinder. The structural vibration of main body and turbocharger core hole are also occurred by the loosen top bracing and excess wear-out or failure of turbocharger's bearings. The marine diesel engine should be safely designed from these vibrations. This paper introduces experimental methods to develop the prototype of integrated vibration monitoring system for marine diesel engine.

  • PDF

Numerical and Theoretical Study on the Fluid Flow in the Cooling System of a Marine Diesel Engine (선박용 디젤엔진의 냉각수 유동에 대한 수치해석적 및 이론적 연구)

  • Suh, Yong-Kweon;Heo, Seong-Gyu;Chung, Sung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.119-130
    • /
    • 2008
  • Diesel engine is one of the most expensive and important components in a ship. Many researchers are interested in increasing the performance of diesel engines. Design of an optimum cooling system should also contribute to the enhancement of the performance as well as the efficiency of engines. In this study, we investigated the flow pattern within the cooling system of a marine diesel engine by using numerical simulation prior to the study of the heat-transfer problem. The engine cooling system is composed of five cooling units each unit containing a water-jacket and a cylinder head. Based on the calculated data, we also conducted theoretical analysis that can predict the flow-rate delivery in each of the five units.

Feasibility Study and Optimization of Organic Rankine Cycle to Recover Waste Heat of Marine Diesel Engine (유기 랜킨 사이클을 이용한 선박 주기관 폐열회수 시스템의 적용성과 최적화)

  • Lee, Hoki;Lee, Dongkil;Park, Gunil
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.103-109
    • /
    • 2013
  • The Present work focuses on application of Organic Rankine Cycle - Waste heat Recovery System (ORC-WHRS) for marine diesel engine. ORC and its combined cycle with the engine were simulated and its performance was estimated theoretically under the various engine operation conditions and cooling water conditions. The working fluid, R245fa, was selected for the consideration of the heat source temperature, system efficiency and safety issues. According to the thermodynamic analysis, ~13.1% of system efficiency of the cycle was performed and it is about 4% of the mechanical power output of the considering Marine Diesel Engine. Also, addition of evaporator and pre-heater were studied to maximize output power of Organic Rankine Cycle as a waste heat recovery system of the marine diesel engine.

  • PDF

A study on the heat release rate pattern variation according to the change of operating conditions in pre-combution chamber type diesel engine (예연소실식 디젤기관의 운전조건변화에 따른 열발생률 형태변동에 관한 고찰)

  • 이진우;최재성;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.31-44
    • /
    • 1987
  • Nowadays, the problems of energy and environmental pollution become serious day by day and the diesel engine, which has been proved to be superior to gasoline engine with respect to fuel consumption and ecological problems of exhaust gas, has been adopted widely for various purposes from the marine diesel engine and the dynamo engine to all kinds of engine on land. Therefore, extensive parametric studies on combustion of diesel engine should be done for its desing and improvement. To predict the behavior of diesel engien according to variable operating conditions by means of cycle simulation, the reasonable pattern of heat release rate has to be asumed. But it is necessary to know the actual variation of heat release rate in order to assume the reasonable pattern of heat release rate according to the actual operating conditions. In this paper, on a high speed small bore diesel engine with pre-combustion chamber, experimental investigations were carried out to determine the relationship between the heat release pattern and parameters such as engine load and speed. And also, the theoretical investigations about the performance variations of the above diesel engine according to the predicted pattern of heat release rate variation were performed. From the above observations, it may be said that the Fanboro indicator, which was used to get the cylinder pressure, can be used to estimate a reasonable pattern of heat release rate and it is confirmed that the pattern of heat release rate for the pre-combustion type engine is different from that of the direct injection type engine.

  • PDF

A Study on the Optimun Speed Measurement for the Speed Control of a Diesel Engine (디젤기관의 속도제어를 위한 최적회전수 측정에 관한 연구)

  • 유영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.579-583
    • /
    • 1997
  • A diesel Engine rotates vibratively because of alternative explosion strokes. Traditional measurement of a diesel engine speed is carried out by measuring output voltage of FV convertor from input signals of MPU(magnetic pickup unit) or of DC tachometer. Because these measurement include also vibrative rotation of a diesel engine, an analog filter is often used to eliminate high frequency noises due to periodic explosion stroke. But by this method these high frequency noises do not eliminated effectively because noise frequencies are changed according to diesel engine speed. In this paper, author proposes a new measurement method of a diesel engine revolution which read digital signal directly from MPU and prove the utility of proposed method through the real experiment.

  • PDF

A Study on the Transient Torsional Vibration of 4 Stroke Marine Diesel Engine (선박용 4행정 디젤엔진의 과도비틀림진동에 관한 연구)

  • Lee, D. C.;J. D. Yu;H. J. Jeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.312.2-312
    • /
    • 2002
  • Theoretical analysis of transient torsional vibration was started from early 1960's for high power synchronous motor application. Especially, its simulation and measuring techniques in marine engineering field have been steadily studied by manufacturers of flexible coupling and designers of four stroke marine diesel engine. In this paper, the simulation method of transient torsional vibration of four stroke marine diesel engine using the Newmark method are introduced. (omitted)

  • PDF