• Title/Summary/Keyword: marine biotechnology

Search Result 1,889, Processing Time 0.201 seconds

Marine Biodiversity Study and Biotechnology Exploitation in China

  • Liu, J.Y.
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.40-47
    • /
    • 2006
  • Large scale marine biodiversity studies in China have been carried out for more than half a century since the founding of the Institute of Oceanology, CAS, in 1950. Through a series of coastal and multi-disciplinary oceanographic investigations in the shelf seas and biodiversity studies since the late fifties, a total of 20,278 species of marine biota have been recorded upto 1994. Recent intensive studies have further revealed the richness of marine biota of the China seas,a great number of marine species have been found and many new taxa established. The total species number of main biotic groups increased about 50 % of that estimated in 1994. The results have promoted the fast development of China's marine fisheries, medicine (drug) and biodiversity research, and attracted many scientists, particularly bio-technologists, to join their studies. Environmental deterioration and human activity strongly stressed the sustainable development and conservation of marine bio-diversity, and resulted in the increase of end angered species as record ed in the new published ${\ll}$China Species Red List${\gg}$ with the threatened category of species assessed by adopting the new IUCN criteria. To further reveal the high diversity and their history, present status and future of marine organisms existed in the world ocean, an international Project ${\ll}$Census of Marine Life (CoML)${\gg}$ was established in 2000 in the USA. Scientists predicted that 2 to 3 times of numbers of the known species will possibly be found in various marine habitats, particularly the abyssal ocean. The Research Plan and the Projects were briefly introduced, and the relationship between marine biodiversity and biotechnology was discussed. The Project planned to apply new and high techniques and new equipments on board research vessel and in laboratory. Brief review of recent advances of Chinas' marine biodiversity and biotechnology studies indicated that fascinate results have been achcieved; but further effort should be made to promote the continuous advance of our basic researches and their application in related production and maintain sustainable development.

  • PDF

Application of Environmental DNA (eDNA) for Marine Biodiversity Analysis (해양생물 다양성 연구를 위한 환경유전자(eDNA)의 적용)

  • Soyun Choi;Seung Jae Lee;Eunkyung Choi;Euna Jo;Jinmu Kim;Minjoo Cho;Jangyeon Kim;Sooyeon Kwon;Hyun Park
    • Journal of Marine Life Science
    • /
    • v.8 no.2
    • /
    • pp.93-103
    • /
    • 2023
  • eDNA, an abbreviation for environmental DNA, means DNA derived from organisms inhabiting in a specific environment. The utilization of eDNA extracted from environmental samples allows for efficient and accurate monitoring of organisms inhabiting the respective environment. Specifically, eDNA obtained from seawater samples can be used to analyze marine biodiversity. After collecting seawater samples and extracting eDNA, metagenome analysis enables the taxonomic and diversity analysis among marine organisms inhabiting the sampled area. This review proposed an overall process of marine biodiversity analysis by utilizing eDNA from seawater. Currently, the application of eDNA for analyzing marine biodiversity in domestic setting is not yet widespread. This review can contribute to establishment of marine eDNA research methods in Korea, providing valuable assistance in standardizing the use of eDNA in marine biodiversity studies.

Molecular adaptation of the CREB-Binding Protein for aquatic living in cetaceans

  • Jeong, Jae-Yeon;Chung, Ok Sung;Ko, Young-Joon;Lee, Kyeong Won;Cho, Yun Sung;Bhak, Jong;Yim, Hyung-Soon;Lee, Jung-Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.102-109
    • /
    • 2014
  • Cetaceans (whales, dolphins, and porpoises) are aquatic mammals that experienced drastic changes during the transition from terrestrial to aquatic environment. Morphological changes include streamlined body, alterations in the face, transformation of the forelimbs into flippers, disappearance of the hindlimbs and the acquisition of flukes on the tail. For a prolonged diving, cetaceans acquired hypoxia-resistance by developing various anatomical and physiological changes. However, molecular mechanisms underlying these adaptations are still limited. CREB-binding protein (CREBBP) is a transcriptional co-activator critical for embryonic development, growth control, metabolic homeostasis and responses to hypoxia. Natural selection analysis of five cetacean CREBBPs compared with those from 15 terrestrial relatives revealed strong purifying selection, supporting the importance of its role in mammals. However, prediction for amino acid changes that elicit functional difference of CREBBP identified three cetacean specific changes localized within a region required for interaction with SRCAP and in proximal regions to KIX domain of CREBBP. Mutations in CREBBP or SRCAP are known to cause craniofacial and skeletal defects in human, and KIX domain of CREBBP serves as a docking site for transcription factors including c-Myb, an essential regulator of haematopoiesis. In these respects, our study provides interesting insights into the functional adaptation of cetacean CREBBP for aquatic lifestyle.

Molecular Cloning and Expression Pattern of Abalone (Haliotis discus hannai) Myostatin cDNA (참전복(Haliotis discus hannai) Myostatin 유전자의 cDNA 동정 및 발현 분석)

  • Lee, Sang-Beum;Kim, Jeong-Hwan;Jo, Mi-Jin;Oh, Mi-Young;Park, Heum-Gi;Jin, Hyung-Joo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.2
    • /
    • pp.139-145
    • /
    • 2009
  • We cloned and sequenced the open reading frame (ORF) cDNA encoding myostatin from the muscle of abalone (Haliotis discus hannai). The ORF cDNA of the abalone myostatin is 1134 bp and encoded 377 amino acid residues that were 60-96% homologous with the amino acids of other organism myostatins. In addition, the ORF contained a conserved proteolytic cleavage site (RXRR) and nine conserved cysteine residues in the C-terminus. Semi-quantitative RT-PCR revealed the presence of myostatin mRNA in various tissues. The strongest expression was observed in the mantle of female abalone, and the gills and heart of male abalone.

Isolation and Structure Determination of Streptochlorin, an Antiproliferative Agent from a Marine-derived Streptomyces sp. 04DH110

  • Shin, Hee-Jae;Jeong, Hyun-Sun;Lee, Hyi-Seung;Park, Song-Kyu;Kim, Hwan-Mook;Kwon, Ho-Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1403-1406
    • /
    • 2007
  • An antiproliferative agent, streptochlorin, was isolated from the fermentation broth of a marine actinomycete isolated from marine sediment. Phylogenetic analysis of the 16S rRNA gene sequence indicated that the strain belongs to the genus Streptomyces. Bioactivity guided fractionation of the culture extract by solvent partitioning, ODS open flash chromatography, and reversed-phase HPLC gave a pure compound, streptochlorin. Its structure was elucidated by extensive 2D NMR and mass spectral analyses. Streptochlorin exhibited significant antiproliferative activity against human cultured cell lines.