• Title/Summary/Keyword: marble waste

Search Result 21, Processing Time 0.035 seconds

A review on the effect of marble waste on properties of green concrete

  • Rachid Djebien;Amel Bouabaz;Yassine Abbas;Yasser N. Ziada
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.63-74
    • /
    • 2023
  • All production and consumption activities produce wastes, which often cause damage to our environment and multiple risks to the human health. The valorization of these wastes in concrete technology is a future solution that will allow finding other construction materials sources, optimizing energy consumption and protecting the environment. Among these wastes, there is the marble waste. Every year, huge amount of marble waste is discarded as dust or aggregates form, in open-air storage areas causing serious problems for the environment and public health. In this context, the incorporation of marble waste as a replacement of ordinary aggregates or cement in concrete composition is actively investigated by researchers. This paper presents a comprehensive review of published studies over the last 20 years, dealing the effect of marble waste on fresh and hardened properties of concrete. Most of the studies carried out have used marble waste as dust with substitution rates between 5 and 20%. Besides the economic and ecological benefits, this review showed that marble waste can improve the physical, mechanical and durability properties of concrete. This improvement depends on the form (dust, fine aggregate or coarse aggregate), substitution method (as cement or aggregates replacement) and substitution rate of marble waste. Additionally, the review results showed that the use of 10-15% of marble waste dust as cement substitution can lead to increase the compressive strength.

A Study on Properties of High Fluidity Concrete adding Waste Marble Powder (폐대리석 분말을 혼입한 고유동 콘크리트의 특성)

  • Jeong, Euy-Chang;Lee, Yong-Moo;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.262-263
    • /
    • 2014
  • The purpose of this study was to investigate properties of high fluidity concrete adding waste marble powder. A change in the replacement ratios of waste marble powder was measured compressive strength and slump flow, O-Lot and U-Box. Waste marble powder has replaced binder of high fluidity concrete at certain contents of 0~20%. As a results, Slump flow, O-Lot and U-box adding waste marble powder up to 10% have increased by adding waste marble powder. As the concrete with a replacement ratio of waste marble powder up to 10% was found to have a compressive strength superior to that of plain.

  • PDF

Engineering characteristics of dune sand-fine marble waste mixtures

  • Qureshi, Mohsin U.;Mahmood, Zafar;Farooq, Qazi U.;Qureshi, Qadir B.I.L.;Al-Handasi, Hajar;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.547-557
    • /
    • 2022
  • Dune sands are poorly graded collapsible soils lacking fines. This experimental study explored the technical feasibility of sustainable invigoration of fine waste materials to improve the geotechnical properties of dune sand. The fine waste considered in this study is fine marble waste. The fine waste powder was mixed with dune sand at different contents (5, 10,15, 20, 25, 50%), where the gradation, void ratio, compaction, and shear strength characteristics were assessed for each fine marble waste -dune sand blend. The geotechnical properties of the dune sand-fine marble waste mix delineated in this study reveal the enhancement in compaction and gradation characteristics of dune sand. According to the results, the binary mixture of dune sand with 20% of fine marble waste gives the highest maximum dry density and results in shear strength improvement. In addition, a numerical study is conducted for the practical application of the binary mix in the field and tested for an isolated shallow foundation. The elemental analysis of the fine marble waste confirms that the material is non-contaminated and can be employed for engineering applications. Furthermore, the numerical study elucidated that the shallow surface replacement of the site with the dune sand mixed with 20% fine marble waste gives optimal performance in terms of stress generation and settlement behavior of an isolated footing. For a sustainable mechanical performance of the fine marble waste mixed sand, an optimum dose of 20% fine marble waste is recommended, and some correlations are proposed. Thus, for improving dune sand's geotechnical characteristics, the addition of fine marble waste to the dune sand is an environment-friendly solution.

Properties of concrete incorporating sand and cement with waste marble powder

  • Ashish, Deepankar K.;Verma, Surender K.;Kumar, Ravi;Sharma, Nitisha
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.145-160
    • /
    • 2016
  • Marble is a metamorphic rock used widely in construction which increases amount of marble powder obtained from it. Marble powder is a waste product obtained from marble during its processing. Marble waste is high in calcium oxide content which is cementing property but it creates many environmental hazards too if left in environment or in water. In this research, partial replacement of cement and sand by waste marble powder (WMP) has been investigated. Seven concrete mixtures were prepared for this investigation by partially replacing cement, sand with WMP at proportions of 0%, 10% and 15% by weight separately and in combined form. To determine compressive strength, flexural strength and split tensile strength of concrete made with waste marble powder, the samples at the curing ages of 7, 28 and 90 days was recorded. Different tests of durability were applied on samples like ultrasonic pulse wave test, absorption and sorptivity. For further investigation all the results were compared and noticed that WMP has shown good results and enhancing mechanical properties of concrete mix on partially replacing with sand and cement in set proportions. Moreover, it will solve the problem of environmental health hazard.

Incorporation of marble waste as sand in formulation of self-compacting concrete

  • Djebien, Rachid;Hebhoub, Houria;Belachia, Mouloud;Berdoudi, Said;Kherraf, Leila
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.87-91
    • /
    • 2018
  • Concrete is the most widely used building material all over the world, because of its many technical and economic qualities. This pressure on the concrete resource causes an intensive exploitation of the quarries of aggregates, which results in a exhaustion of these and environmental problems. That is why recycling and valorization of materials are considered as future solutions, to fill the deficit between production and consumption and to protect the environment. This study is part of the valorization process of local materials, which aims to reuse marble waste as fine aggregate (excess loads of marble waste exposed to bad weather conditions) available in the marble quarry of Fil-fila (Skikda, East of Algeria) in the manufacture of self-compacting concretes. It consists of introducing the marble waste as sand into the self-compacting concrete formulation, with variable percentages (25%, 50%, 75% and 100%) and to study the development of its properties both in fresh state (air content, density, slump flow, V-funnel, L-box and sieve stability) as well as the hardened one (compressive strength and flexural strength). The results obtained showed us that marble wastes can be used as sand in the manufacture of self compacting concretes.

Effect of marble waste fines on rheological and hardened properties of sand concrete

  • Djebien, R.;Belachia, M.;Hebhoub, H.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1241-1251
    • /
    • 2015
  • Faced with the growing needs of material resources and requirements of environmental protection for achieving sustainable development, it has become necessary to study and investigate all possibilities of exploring crushed and dune sand, reusing industrial wastes and by-product, and also applying new technologies including sand concrete which can replace the conventional concretes in certain structures to surmount the deficit on construction materials, conserve natural resources, lessen the burden of pollutants to protect the environment and reduce the consumption of energy sources. This experimental study is a part of development and valorization of local materials project in Skikda region (East of Algeria). It aims at studying the effects of partial replacement of sand with marble waste as fines on several fresh and hardened properties of sand concrete in order to reuse these wastes in the concrete manufacturing, resolve the environmental problems caused by them and find another source of construction materials. To achieve these objectives, an experimental program has been carried out; it was consisted to incorporate different percentages of marble waste fines (2, 4, 6, 8, 10 and 12%) in the formulations of sand concrete and study the development of several mechanical and rheological properties. We are also trying to find the optimal percentage of marble waste fine replaced in sand concrete that makes the strength of the concrete maximum. Obtained results showed that marble waste fines improve the properties of sand concrete and can be used as an additive material in sand concrete formulation.

Investigation of engineering properties of clayey soil experimentally with the inclusion of marble and granite waste

  • Baki Bagriacik;Gokhan Altay;Cafer Kayadelen
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.425-435
    • /
    • 2023
  • Granite and marble are widely produced and utilized in the construction industry, resulting in significant waste production. It is essential to manage this waste appropriately and repurpose it in recycling processes to ensure sustainability. The utilization of waste materials such as marble and granite waste (MGW) has become increasingly important in geotechnical engineering to improve the physical and mechanical properties of weak soils. This study investigated the applicability of utilizing MGW and cement (C)-MGW mixtures to improve clayey soil. A series of model plate loading tests were carried out in a specialized circular test tank to assess the influence of MGW and C-MGW mixing ratios on clayey soil samples. The samples were prepared by blending MGW and C-MGW in predetermined proportions. It is found that the bearing capacity of clay soil increased by approximately 71% when using MGW and C additives. Moreover, the consolidated settlement values of the clay soil decreased up to 6 times compared to the additive-free case.

A Study on Properties of Self-Compacting Concrete with waste marble powder (폐 대리석 분말을 활용한 자기충전 콘크리트의 특성)

  • Jeong, Euy-Chang;Lee, Yong-Moo;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.76-77
    • /
    • 2013
  • The paper study on the mechanical properties of self-compacting concrete with waste marble powder. A change in the replacement ratio s of waste marble powder was measured compressive strength and slump flow, U-Box. As a results, Slump flow and U-box using waste marble powder tend to increase slump flow and compacting with replacement ratio. As the concrete with a replacement ratio of copper slag up to 10% was found to have a compressive strength superior to that of plain.

  • PDF

Study on Recycling Technology of Waste Artificial Marble using Starch (전분을 이용한 폐인조대리석의 재활용 기술에 관한 연구)

  • Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.6
    • /
    • pp.433-440
    • /
    • 2018
  • The pyrolysis has been universally applied to recycle the waste artificial marble. However, the existing heat treatment equipment has relatively low heat transfer efficiency into the inner part of the waste artificial marble. Besides, it leads to unnecessary excessive gas during the partial carbonization of the polymethyl methacrylate (PMMA) and raises the risk of fire due to heat at an extremely high temperature. This study suggests the process of pyrolysis at the formation state after adding the starch to waste artificial marble to overcome above-mentioned problems. As the result of experiments, this method showed that the pyrolysis of waste artificial marble was greatly improved at comparatively low temperature condition of $350^{\circ}C$. Moreover, it also manifested the effect on securing the stability and energy savings necessary for the recovery of methyl methacrylate (MMA) and ${\alpha}$-alumina (${\alpha}-Al_2O_3$).

Effect of Waste Marble Powder on the Fundamental Properties of High Fluidity Concrete (폐 대리석 분말을 혼입한 고유동 콘크리트의 기초적 특성에 대한 실험적 연구)

  • Lee, Yong-Moo;Shin, Sang-Yeop;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.153-160
    • /
    • 2015
  • The marble powder is a by-product that can be freely collected during the manufacturing process of marble, such as sawing, shaping, and polishing. Disposal of this waste powder is one of the environmental problems worldwide today. Therefore, this study investigated to solve this problem by consuming the waste marble powder in high fluidity concrete, as a pore filler. For this purpose, the waste marble powder was used as a binder replacing 5%, 10%, 15%, and 20% of cement in high fluidity concrete. After mixing, slump flow test, time-to-reach the slump flow of 500mm test, O-lot test and U-box test were conducted with fresh concrete. For the hardened concrete, compressive strength was determined at the age of 28 days. According to the test results, the workability of high fluidity concrete increased with the powder of 15% replacement, and the compressive strength of high fluidity concrete also increased with the same amount of powder.