• Title/Summary/Keyword: map-matching algorithm

Search Result 233, Processing Time 0.023 seconds

Localization and 3D Polygon Map Building Method with Kinect Depth Sensor for Indoor Mobile Robots (키넥트 거리센서를 이용한 실내 이동로봇의 위치인식 및 3 차원 다각평면 지도 작성)

  • Gwon, Dae-Hyeon;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.745-752
    • /
    • 2016
  • We suggest an efficient Simultaneous Localization and 3D Polygon Map Building (SLAM) method with Kinect depth sensor for mobile robots in indoor environments. In this method, Kinect depth data is separated into row planes so that scan line segments are on each row plane. After grouping all scan line segments from all row planes into line groups, a set of 3D Scan polygons are fitted from each line group. A map matching algorithm then figures out pairs of scan polygons and existing map polygons in 3D, and localization is performed to record correct pose of the mobile robot. For 3D map-building, each 3D map polygon is created or updated by merging each matched 3D scan polygon, which considers scan and map edges efficiently. The validity of the proposed 3D SLAM algorithm is revealed via experiments.

Multi-Range Approach of Stereo Vision for Mobile Robot Navigation in Uncertain Environments

  • Park, Kwang-Ho;Kim, Hyung-O;Baek, Moon-Yeol;Kee, Chang-Doo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1411-1422
    • /
    • 2003
  • The detection of free spaces between obstacles in a scene is a prerequisite for navigation of a mobile robot. Especially for stereo vision-based navigation, the problem of correspondence between two images is well known to be of crucial importance. This paper describes multi-range approach of area-based stereo matching for grid mapping and visual navigation in uncertain environment. Camera calibration parameters are optimized by evolutionary algorithm for successful stereo matching. To obtain reliable disparity information from both images, stereo images are to be decomposed into three pairs of images with different resolution based on measurement of disparities. The advantage of multi-range approach is that we can get more reliable disparity in each defined range because disparities from high resolution image are used for farther object a while disparities from low resolution images are used for close objects. The reliable disparity map is combined through post-processing for rejecting incorrect disparity information from each disparity map. The real distance from a disparity image is converted into an occupancy grid representation of a mobile robot. We have investigated the possibility of multi-range approach for the detection of obstacles and visual mapping through various experiments.

Generation of ROI Enhanced High-resolution Depth Maps in Hybrid Camera System (복합형 카메라 시스템에서 관심영역이 향상된 고해상도 깊이맵 생성 방법)

  • Kim, Sung-Yeol;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.13 no.5
    • /
    • pp.596-601
    • /
    • 2008
  • In this paper, we propose a new scheme to generate region-of-interest (ROI) enhanced depth maps in the hybrid camera system, which is composed of a low-resolution depth camera and a high-resolution stereoscopic camera. The proposed method creates an ROI depth map for the left image by carrying out a three-dimensional (3-D) warping operation onto the depth information obtained from the depth camera. Then, we generate a background depth map for the left image by applying a stereo matching algorithm onto the left and right images captured by the stereoscopic camera. Finally, we merge the ROI map with the background one to create the final depth map. The proposed method provides higher quality depth information on ROI than the previous methods.

New stereo matching algorithm based on probabilistic diffusion (확률적 확산을 이용한 스테레오 정합 알고리듬)

  • 이상화;이충웅
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.4
    • /
    • pp.105-117
    • /
    • 1998
  • In this paper, the general formula of disparity estimation based on Bayesian Maximum A Posteriori (MAP) algorithm is derived and implemented with simplified probabilistic models. The probabilistic models are independence and similarity among the neighboring disparities in the configuration.The formula is the generalized probabilistic diffusion equation based on Bayesian model, and can be implemented into the some different forms corresponding to the probabilistic models in the disparity neighborhood system or configuration. And, we proposed new probabilistic models in order to simplify the joint probability distribution of disparities in the configuration. According to the experimental results, the proposed algorithm outperformed the other ones, such as sum of swuared difference(SSD) based algorithm and Scharstein's method. We canconclude that the derived formular generalizes the probabilistic diffusion based on Bayesian MAP algorithm for disparity estimation, and the propsoed probabilistic models are reasonable and approximate the pure joint probability distribution very well with decreasing the computations to 0.01% of the generalized formula.

  • PDF

High Speed Self-Adaptive Algorithms for Implementation in a 3-D Vision Sensor (3-D 비젼센서를 위한 고속 자동선택 알고리즘)

  • Miche, Pierre;Bensrhair, Abdelaziz;Lee, Sang-Goog
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.123-130
    • /
    • 1997
  • In this paper, we present an original stereo vision system which comprises two process: 1. An image segmentation algorithm based on new concept called declivity and using automatic thresholds. 2. A new stereo matching algorithm based on an optimal path search. This path is obtained by dynamic programming method which uses the threshold values calculated during the segmentation process. At present, a complete depth map of indoor scene only needs about 3 s on a Sun workstation IPX, and this time will be reduced to a few tenth of second on a specialised architecture based on several DSPs which is currently under consideration.

  • PDF

Fractal Depth Map Sequence Coding Algorithm with Motion-vector-field-based Motion Estimation

  • Zhu, Shiping;Zhao, Dongyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.242-259
    • /
    • 2015
  • Three-dimensional video coding is one of the main challenges restricting the widespread applications of 3D video and free viewpoint video. In this paper, a novel fractal coding algorithm with motion-vector-field-based motion estimation for depth map sequence is proposed. We firstly add pre-search restriction to rule the improper domain blocks out of the matching search process so that the number of blocks involved in the search process can be restricted to a smaller size. Some improvements for motion estimation including initial search point prediction, threshold transition condition and early termination condition are made based on the feature of fractal coding. The motion-vector-field-based adaptive hexagon search algorithm on the basis of center-biased distribution characteristics of depth motion vector is proposed to accelerate the search. Experimental results show that the proposed algorithm can reach optimum levels of quality and save the coding time. The PSNR of synthesized view is increased by 0.56 dB with 36.97% bit rate decrease on average compared with H.264 Full Search. And the depth encoding time is saved by up to 66.47%. Moreover, the proposed fractal depth map sequence codec outperforms the recent alternative codecs by improving the H.264/AVC, especially in much bitrate saving and encoding time reduction.

Study on the estimation and representation of disparity map for stereo-based video compression/transmission systems (스테레오 기반 비디오 압축/전송 시스템을 위한 시차영상 추정 및 표현에 관한 연구)

  • Bak Sungchul;Namkung Jae-Chan
    • Journal of Broadcast Engineering
    • /
    • v.10 no.4 s.29
    • /
    • pp.576-586
    • /
    • 2005
  • This paper presents a new estimation and representation of a disparity map for stereo-based video communication systems. Several pixel-based and block-based algorithms have been proposed to estimate the disparity map. While the pixel-based algorithms can achieve high accuracy in computing the disparity map, they require a lost of bits to represent the disparity information. The bit rate can be reduced by the block-based algorithm, sacrificing the representation accuracy. In this paper, the block enclosing a distinct edge is divided into two regions and the disparity of each region is set to that of a neighboring block. The proposed algorithm employs accumulated histograms and a neural network to classify a type of a block. In this paper, we proved that the proposed algorithm is more effective than the conventional algorithms in estimating and representing disparity maps through several experiments.

A Simple Stereo Matching Algorithm using PBIL and its Alternative (PBIL을 이용한 소형 스테레오 정합 및 대안 알고리즘)

  • Han Kyu-Phil
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.429-436
    • /
    • 2005
  • A simple stereo matching algorithm using population-based incremental learning(PBIL) is proposed in this paper to decrease the general problem of genetic algorithms, such as memory consumption and inefficiency of search. PBIL is a variation of genetic algorithms using stochastic search and competitive teaming based on a probability vector. The structure of PBIL is simpler than that of other genetic algorithm families, such as serial and parallel ones, due to the use of a probability vector. The PBIL strategy is simplified and adapted for stereo matching circumstances. Thus, gene pool, chromosome crossover, and gene mutation we removed, while the evolution rule, that fitter chromosomes should have higher survival probabilities, is preserved. As a result, memory space is decreased, matching rules are simplified and computation cost is reduced. In addition, a scheme controlling the distance of neighbors for disparity smoothness is inserted to obtain a wide-area consistency of disparities, like a result of coarse-to-fine matchers. Because of this scheme, the proposed algorithm can produce a stable disparity map with a small fixed-size window. Finally, an alterative version of the proposed algorithm without using probability vector is also presented for simpler set-ups.

Terrain Matching Technique Using 3-D Terrain Maps (3차원 지형정보를 이용한 지형영상의 정합기법)

  • 김준식;강민석;박래홍;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.7 no.1
    • /
    • pp.13-27
    • /
    • 1991
  • DEM(digital elevation map) is a very useful information in various applications. In this paper, we have studied on the terrain matching algorithm using the DEM, which was proposed by Rodriguez and Aggarwal(1990) for an aircraft navigation system. We evaluated its performance using syntactic images. Cliff maps and critical points are used for the reduction of computation time and information size to be processed. The computer simulation shows that though the computational complexity is high, the technique is efficient even to noisy images.

A Study on Genetic Algorithm and Stereo Matching for Object Depth Recognition (물체의 위치 인식을 위한 유전 알고리즘과 스테레오 정합에 관한 연구)

  • Hong, Seok-Keun;Cho, Seok-Je
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.355-361
    • /
    • 2008
  • Stereo matching is one of the most active research areas in computer vision. In this paper, we propose a stereo matching scheme using genetic algorithm for object depth recognition. The proposed approach considers the matching environment as an optimization problem and finds the optimal solution by using an evolutionary strategy. Accordingly, genetic operators are adapted for the circumstances of stereo matching. An individual is a disparity set. Horizontal pixel line of image is considered as a chromosome. A cost function is composed of certain constraints which are commonly used in stereo matching. Since the cost function consists of intensity, similarity and disparity smoothness, the matching process is considered at the same time in each generation. The LoG(Laplacian of Gaussian) edge is extracted and used in the determination of the chromosome. We validate our approach with experimental results on stereo images.