• 제목/요약/키워드: map-matching algorithm

검색결과 233건 처리시간 0.027초

수정된 ICP알고리즘을 이용한 수치지도와 QuickBird 영상의 보정 (Coregistration of QuickBird Imagery and Digital Map Using a Modified ICP Algorithm)

  • 한동엽;어양담;김용현;이광재;김윤수
    • 한국측량학회지
    • /
    • 제28권6호
    • /
    • pp.621-626
    • /
    • 2010
  • For geometric correction of high-resolution images, the authors matched corresponding objects between a large-scale digital map and a QuickBird image to obtain the coefficients of the first order polynomial. Proximity corrections were performed, using the Boolean operation, to perform automated matching accurately. The modified iterative closest point (ICP) algorithm was used between the point data of the surface linear objects and the point data of the edge objects of the image to determine accurate transformation coefficients. As a result of the automated geometric correction for the study site, an accuracy of 1.207 root mean square error (RMSE) per pixel was obtained.

HRNet 모델을 이용한 항공정사영상간 영상 매칭 (Image Matching for Orthophotos by Using HRNet Model)

  • 성선경;최재완
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.597-608
    • /
    • 2022
  • 원격탐사 자료는 재난, 농업, 도시계획 및 군사 등 다양한 분야에서 활용되며, 최근 다양한 고해상도 센서에서 취득된 시계열 자료의 활용에 대한 요구가 증대되고 있다. 본 연구에서는 시계열 원격탐사 자료의 활용을 위해 딥러닝 기법을 이용한 영상 매칭 방법을 제안하였다. 본 연구에서 적용한 딥러닝 모델은 영상분할 영역에서 많이 사용되고 있는 HRNet을 기반으로 하였다. 특히, 기본영상과 목표영상 간 상관도 맵을 효과적으로 계산하고, 학습의 효율을 높이기 위하여 denseblock을 추가하였다. 국토지리정보원의 다시기 항공정사영상을 이용하여 제안된 모델의 학습을 수행하였으며, 학습에 사용하지 않은 자료를 이용하여 평가를 하고자 하였다. 딥러닝 모델을 이용한 영상매칭 성능을 평가하기 위해 영상 매칭결과와의 비교평가를 수행하였다. 실험 결과, 제안기법을 통한 영상 매칭률이 80%일 때의 평균 오차는 3화소로 ZNCC에 의한 결과인 25화소에 비해 더 높은 정확도를 보였다. 제안된 기법은 식생의 생장에 따라 영상의 변화가 심한 산지 및 농지 지역에 대해서도 효과적임을 확인하였다. 이를 통해 딥러닝을 이용한 기준영상과 목표영상의 매칭을 수행할 수 있을 것으로 판단되며, 위성영상의 상호좌표등록 및 다시기 영상의 정합 등에 활용할 수 있을 것으로 예상된다.

디지털지형정보 기반의 실시간 자율주행 격자지도 생성 연구 (Realtime Generation of Grid Map for Autonomous Navigation Using the Digitalized Geographic Information)

  • 이호주;이영일;박용운
    • 한국군사과학기술학회지
    • /
    • 제14권4호
    • /
    • pp.539-547
    • /
    • 2011
  • In this paper, a method of generating path planning map is developed using digitalized geographic information such as FDB(Feature DataBase). FDB is widely used by the Army and needs to be applied to all weapon systems of newly developed. For the autonomous navigation of a robot, it is necessary to generate a path planning map by which a global path can be optimized. First, data included in FDB is analyzed in order to identify meaningful layers and attributes of which information can be used to generate the path planning map. Then for each of meaningful layers identified, a set of values of attributes in the layer is converted into the traverse cost using a matching table in which any combination of attribute values are matched into the corresponding traverse cost. For a certain region that is gridded, i.e., represented by a grid map, the traverse cost is extracted in a automatic manner for each gird of the region to generate the path planning map. Since multiple layers may be included in a single grid, an algorithm is developed to fusion several traverse costs. The proposed method is tested using a experimental program. Test results show that it can be a viable tool for generating the path planning map in real-time. The method can be used to generate other kinds of path planning maps using the digitalized geographic information as well.

스테레오 영상 기반의 객체 탐지 및 객체의 3차원 위치 추정 (Object Detection and 3D Position Estimation based on Stereo Vision)

  • 손행선;이선영;민경원;서성진
    • 한국정보전자통신기술학회논문지
    • /
    • 제10권4호
    • /
    • pp.318-324
    • /
    • 2017
  • 본 항공기에 스테레오 카메라를 장착하여 영상 기반의 비행 객체 탐지 및 탐지된 객체의 3차원 위치를 추정하는 방법을 제시하였다. 구름 사이에 존재할 수 있는 원거리의 작은 객체를 탐지하기 위한 방법으로 PCT 기반의 Saliency Map을 생성하여 이용하였으며, 이렇게 탐지된 객체는 좌우 스테레오 영상에서 매칭을 수행하여 스테레오 시차(Disparity)를 추출하였다. 정확한 Disparity를 추출하기 위하여 비용집적(Cost Aggregation) 영역을 탐지 객체에 맞추어 가변되도록 가변 영역으로 사용하였으며, 본 논문에서는 Saliency Map에서 객체의 존재 영역으로 검출된 결과를 사용하였다. 좀 더 정밀한 Disparity를 추출하기 위하여 Sub-pixel interpolation 기법을 사용하여 Sub-pixel 레벨의 실수형 Disparity를 추출하였다. 또한 이에 카메라 파라미터를 적용하여 실제 탐지된 비행 객체의 3차원 공간 좌표를 생성하여 객체의 공간위치를 추정하는 방법을 제시하였다. 이는 향후 자율비행체의 영상기반 객체 탐지 및 충돌방지 시스템에 활용될 수 있을 것으로 기대된다.

스테레오비전을 이용한 실물 얼굴과 사진의 구분 (Distinction of Real Face and Photo using Stereo Vision)

  • 신진섭;김현정;원일용
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권7호
    • /
    • pp.17-25
    • /
    • 2014
  • 영상 기록을 남기는 장치들에서 신원을 파악할 수 있는 이미지를 확보할 때 입력 영상이 실물인지 사진인지를 구분하는 것은 중요한 문제이다. 단일 영상과 센서 등을 이용하여 단순하게 대상까지 거리만의 측정으로 구분하는 방법은 많은 약점을 가지고 있다. 따라서 본 논문은 스테레오 영상을 이용하여 관찰대상까지 거리뿐만 아니라, 얼굴영역의 깊이 지도를 만들어 입체감을 체크함으로써 단순 사진과 실물 얼굴을 구별하는 방법에 관한 것을 제안한다. 사진과 실물 얼굴을 촬영하고 여기에서 측정된 깊이지도 값을 이용하여 학습 알고리즘에 적용한다. 반복적인 학습을 통해 정확하게 실물과 사진을 구분하는 패턴을 찾았다. 제안한 알고리즘의 유용성은 실험으로 검증하였다.

지역과 전역적인 색보정을 결합한 스테레오 영상에서의 색 일치 (Integrated Color Matching in Stereoscopic Image by Combining Local and Global Color Compensation)

  • 수란;하호건;김대철;하영호
    • 전자공학회논문지
    • /
    • 제50권12호
    • /
    • pp.168-175
    • /
    • 2013
  • 스테레오 좌우 영상간의 색 일치는 3D 영상을 재현할 때 매우 중요하다. 이를 위해 카메라 세팅 및 촬영 환경을 일치시켜서 스테레오 영상을 획득하더라도 여전히 색 불일치가 나타나게 된다. 이러한 색 불일치는 특성에 따라 전역과 지역적인 색불일치로 구분될 수 있다. 따라서 이들 특성을 고려하여 스테레오 영상의 색을 정확히 일치시킬 수 있는 방법이 필요하다. 본 논문에서는 누적 히스토그램과 3D 거리정보를 이용하여 전역과 지역의 색 불일치를 동시에 보정하는 방법을 제안한다. 먼저 기준이 되는 영상의 누적 히스토그램을 기반으로 한 매칭 함수를 이용하여 전역적으로 발생하는 색 불일치를 보정한다. 다음으로 대응되는 샘플 특징점 간의 CD-LUT(color difference look-up table)을 구성하고, disparity map을 통한 3D 거리 정보를 기반으로 한 샘플 특징점의 유사성을 기준으로 가중치를 적용하여 지역적인 색 일치를 수행한다. 마지막으로 전역적인 보정과 지역적인 보정된 영상을 결합함으로서 스테레오 영상에서 나타나는 색 불일치를 보정하였다. 색차가 발생한 스테레오 영상에 대해 기존 색 일치 방법과 제안한 방법을 비교하기 위하여 색상 유사도를(hue similarity)와 MOS(mean opinion scores) 이용하여 평가하였다. 실험 결과에서 제안한 방법을 통한 결과 영상이 기존 방법을 통한 결과 영상보다 더 높은 수치를 나타냄을 알 수 있었다.

3D 콘텐츠 생성에서의 스테레오 매칭 알고리즘에 대한 매칭 비용 함수 성능 분석 (Performance Analysis of Matching Cost Functions of Stereo Matching Algorithm for Making 3D Contents)

  • 홍광수;정연규;김병규
    • 융합보안논문지
    • /
    • 제13권3호
    • /
    • pp.9-15
    • /
    • 2013
  • 스테레오 매칭 과정에 있어서 매칭 비용을 구하는 것은 매우 중요한 과정이다. 이러한 스테레오 매칭 과정의 성능을 살펴보기 위하여 본 논문에서는 기존에 제안된 매칭 비용 함수들에 대한 기본 개념들을 소개하고 각각의 성능 및 장점을 분석하고자 한다. 가장 간단한 매칭 비용 함수는 매칭 되는 영상의 일관된 밝기를 이용하여 좌, 우 영상 간 서로 대응하는 대응점을 추정하는 과정으로, 본 논문에서 다루는 매칭 비용함수는 화소 기반과 윈도우 기반의 매칭 비용 방법으로 크게 두 가지로 나눌 수 있다. 화소 기반의 방법으로는 절대 밝기차(the absolute intensity differences: AD)와 sampling-intensitive absolute differences of Birchfield and Tomasi (BT) 방법이 있고, 윈도우 기반의 방법으로는 차이 절대 값의 합(sum of the absolute differences: SAD), 차이 제곱 값의 합(sum of squred differences: SSD), 표준화 상호상관성(normalized cross-correlation: NCC), 제로 평균 표준화 상호 상관성(zero-mean normalized cross-correlation: ZNCC), census transform, the absolute differences census transform (AD-Census) 이 있다. 본 논문에서는 앞서 언급한 기존에 제안된 매칭 비용 함수들을 정확도와 시간 복잡도를 측정했다. 정확도 측면에서 AD-Census 방법이 평균적으로 가장 낮은 매칭 율을 보여줬고, 제로 평균 표준화 상호 상관성 방법은 non-occlusion과 all 평가 항목에서 가장 낮은 매칭 오차율을 보여 주지만, discontinuities 평가 항목에서는 블러 효과 때문에 높은 매칭 오차율을 보여 주었다. 시간 복잡도 측면에서는 화소 기반인 절대 밝기차 방법이 낮은 복잡도를 보여 주였다.

스테레오 내시경 영상의 깊이정보추출 알고리즘 개발 (Development of Algorithm or Depth Extraction in Stereo Endoscopic Image)

  • 이상학;김정훈;황도식;송철규;이영묵;김원기;이명호
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.142-145
    • /
    • 1997
  • This paper presents the development of depth extraction algorithm or the 3D Endoscopic Data using a stereo matching method and depth calculation. The purpose of other's algorithms is to reconstruct 3D object surface and make depth map, but a one of this paper is to measure exact depth information on the base of [cm] from camera to object. For this, we carried out camera calibration.

  • PDF

영상의 깊이정보 추출을 위한 weighted cost aggregation 기반의 스테레오 정합 기법 (Weighted cost aggregation approach for depth extraction of stereo images)

  • 윤희주;차의영
    • 한국정보통신학회논문지
    • /
    • 제13권6호
    • /
    • pp.1194-1199
    • /
    • 2009
  • 스테레오 비전 시스템(stereo vision system)은 2차원 영상정보를 이용하여 3차원 깊이 정보를 획득하는 데 유용한 방법으로, 그동안 많은 연구가 진행되었다. 3차원 깊이 정보를 획득하기 위해서는 영상의 대응점을 찾아야 하는데, 속도와 정확성을 동시에 만족시키기가 어렵다. 이러한 문제를 해결하기 위해, 본 논문에서는 적응적 가중치(weight)를 적용한 cost aggregation 기반의 스테레오 정합 기법을 제안한다. 이 방법은 스테레오 영상의 특징을 이용하여 가중치를 획득하고, 색상정보, 밝기정보에 거리정보를 이용하여 가중치를 적용한 후, 이를 이용하여 대응점을 찾아 깊이 정보를 추출한다. 제안된 방법의 성능을 평가하기 위하여 ground truth가 존재하는 다양한 스테레오 영상을 이용하여 실험하였으며, 실험 결과 다양한 영상에서도 향상된 결과를 보였다.

영상의 깊이정보 추출을 위한 weighted cost aggregation 기반의 스테레오 정합 기법 (Weighted cost aggregation approach for depth extraction of stereo images)

  • 윤희주;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.396-399
    • /
    • 2009
  • 스테레오 비전 시스템(stereo vision system)은 2차원 영상정보를 이용하여 3차원 깊이 정보를 획득하는 데 유용한 방법으로, 그동안 많은 연구가 진행되었다. 3차원 깊이 정보를 획득하기 위해서는 영상의 대응점을 찾아야 하는데, 속도와 정확성을 동시에 만족시키기가 어렵다. 이러한 문제를 해결하기 위해, 본 논문에서는 적응적 가중치(weight)를 적용한 cost aggregation 기반의 스테레오 정합 기법을 제안한다. 이 방법은 스테레오 영상의 특징을 이용하여 가중치를 획득하고, 색상정보, 밝기정보, 거리정보에 가중치를 적용한 후, 이를 이용하여 대응점을 찾아 깊이 정보를 추출한다. 제안된 방법의 성능을 평가하기 위하여 ground truth가 존재하는 다양한 스테레오 영상을 이용하여 실험하였으며, 실험 결과 다양한 영상에서도 향상된 결과를 보였다.

  • PDF