For geometric correction of high-resolution images, the authors matched corresponding objects between a large-scale digital map and a QuickBird image to obtain the coefficients of the first order polynomial. Proximity corrections were performed, using the Boolean operation, to perform automated matching accurately. The modified iterative closest point (ICP) algorithm was used between the point data of the surface linear objects and the point data of the edge objects of the image to determine accurate transformation coefficients. As a result of the automated geometric correction for the study site, an accuracy of 1.207 root mean square error (RMSE) per pixel was obtained.
원격탐사 자료는 재난, 농업, 도시계획 및 군사 등 다양한 분야에서 활용되며, 최근 다양한 고해상도 센서에서 취득된 시계열 자료의 활용에 대한 요구가 증대되고 있다. 본 연구에서는 시계열 원격탐사 자료의 활용을 위해 딥러닝 기법을 이용한 영상 매칭 방법을 제안하였다. 본 연구에서 적용한 딥러닝 모델은 영상분할 영역에서 많이 사용되고 있는 HRNet을 기반으로 하였다. 특히, 기본영상과 목표영상 간 상관도 맵을 효과적으로 계산하고, 학습의 효율을 높이기 위하여 denseblock을 추가하였다. 국토지리정보원의 다시기 항공정사영상을 이용하여 제안된 모델의 학습을 수행하였으며, 학습에 사용하지 않은 자료를 이용하여 평가를 하고자 하였다. 딥러닝 모델을 이용한 영상매칭 성능을 평가하기 위해 영상 매칭결과와의 비교평가를 수행하였다. 실험 결과, 제안기법을 통한 영상 매칭률이 80%일 때의 평균 오차는 3화소로 ZNCC에 의한 결과인 25화소에 비해 더 높은 정확도를 보였다. 제안된 기법은 식생의 생장에 따라 영상의 변화가 심한 산지 및 농지 지역에 대해서도 효과적임을 확인하였다. 이를 통해 딥러닝을 이용한 기준영상과 목표영상의 매칭을 수행할 수 있을 것으로 판단되며, 위성영상의 상호좌표등록 및 다시기 영상의 정합 등에 활용할 수 있을 것으로 예상된다.
In this paper, a method of generating path planning map is developed using digitalized geographic information such as FDB(Feature DataBase). FDB is widely used by the Army and needs to be applied to all weapon systems of newly developed. For the autonomous navigation of a robot, it is necessary to generate a path planning map by which a global path can be optimized. First, data included in FDB is analyzed in order to identify meaningful layers and attributes of which information can be used to generate the path planning map. Then for each of meaningful layers identified, a set of values of attributes in the layer is converted into the traverse cost using a matching table in which any combination of attribute values are matched into the corresponding traverse cost. For a certain region that is gridded, i.e., represented by a grid map, the traverse cost is extracted in a automatic manner for each gird of the region to generate the path planning map. Since multiple layers may be included in a single grid, an algorithm is developed to fusion several traverse costs. The proposed method is tested using a experimental program. Test results show that it can be a viable tool for generating the path planning map in real-time. The method can be used to generate other kinds of path planning maps using the digitalized geographic information as well.
본 항공기에 스테레오 카메라를 장착하여 영상 기반의 비행 객체 탐지 및 탐지된 객체의 3차원 위치를 추정하는 방법을 제시하였다. 구름 사이에 존재할 수 있는 원거리의 작은 객체를 탐지하기 위한 방법으로 PCT 기반의 Saliency Map을 생성하여 이용하였으며, 이렇게 탐지된 객체는 좌우 스테레오 영상에서 매칭을 수행하여 스테레오 시차(Disparity)를 추출하였다. 정확한 Disparity를 추출하기 위하여 비용집적(Cost Aggregation) 영역을 탐지 객체에 맞추어 가변되도록 가변 영역으로 사용하였으며, 본 논문에서는 Saliency Map에서 객체의 존재 영역으로 검출된 결과를 사용하였다. 좀 더 정밀한 Disparity를 추출하기 위하여 Sub-pixel interpolation 기법을 사용하여 Sub-pixel 레벨의 실수형 Disparity를 추출하였다. 또한 이에 카메라 파라미터를 적용하여 실제 탐지된 비행 객체의 3차원 공간 좌표를 생성하여 객체의 공간위치를 추정하는 방법을 제시하였다. 이는 향후 자율비행체의 영상기반 객체 탐지 및 충돌방지 시스템에 활용될 수 있을 것으로 기대된다.
영상 기록을 남기는 장치들에서 신원을 파악할 수 있는 이미지를 확보할 때 입력 영상이 실물인지 사진인지를 구분하는 것은 중요한 문제이다. 단일 영상과 센서 등을 이용하여 단순하게 대상까지 거리만의 측정으로 구분하는 방법은 많은 약점을 가지고 있다. 따라서 본 논문은 스테레오 영상을 이용하여 관찰대상까지 거리뿐만 아니라, 얼굴영역의 깊이 지도를 만들어 입체감을 체크함으로써 단순 사진과 실물 얼굴을 구별하는 방법에 관한 것을 제안한다. 사진과 실물 얼굴을 촬영하고 여기에서 측정된 깊이지도 값을 이용하여 학습 알고리즘에 적용한다. 반복적인 학습을 통해 정확하게 실물과 사진을 구분하는 패턴을 찾았다. 제안한 알고리즘의 유용성은 실험으로 검증하였다.
스테레오 좌우 영상간의 색 일치는 3D 영상을 재현할 때 매우 중요하다. 이를 위해 카메라 세팅 및 촬영 환경을 일치시켜서 스테레오 영상을 획득하더라도 여전히 색 불일치가 나타나게 된다. 이러한 색 불일치는 특성에 따라 전역과 지역적인 색불일치로 구분될 수 있다. 따라서 이들 특성을 고려하여 스테레오 영상의 색을 정확히 일치시킬 수 있는 방법이 필요하다. 본 논문에서는 누적 히스토그램과 3D 거리정보를 이용하여 전역과 지역의 색 불일치를 동시에 보정하는 방법을 제안한다. 먼저 기준이 되는 영상의 누적 히스토그램을 기반으로 한 매칭 함수를 이용하여 전역적으로 발생하는 색 불일치를 보정한다. 다음으로 대응되는 샘플 특징점 간의 CD-LUT(color difference look-up table)을 구성하고, disparity map을 통한 3D 거리 정보를 기반으로 한 샘플 특징점의 유사성을 기준으로 가중치를 적용하여 지역적인 색 일치를 수행한다. 마지막으로 전역적인 보정과 지역적인 보정된 영상을 결합함으로서 스테레오 영상에서 나타나는 색 불일치를 보정하였다. 색차가 발생한 스테레오 영상에 대해 기존 색 일치 방법과 제안한 방법을 비교하기 위하여 색상 유사도를(hue similarity)와 MOS(mean opinion scores) 이용하여 평가하였다. 실험 결과에서 제안한 방법을 통한 결과 영상이 기존 방법을 통한 결과 영상보다 더 높은 수치를 나타냄을 알 수 있었다.
스테레오 매칭 과정에 있어서 매칭 비용을 구하는 것은 매우 중요한 과정이다. 이러한 스테레오 매칭 과정의 성능을 살펴보기 위하여 본 논문에서는 기존에 제안된 매칭 비용 함수들에 대한 기본 개념들을 소개하고 각각의 성능 및 장점을 분석하고자 한다. 가장 간단한 매칭 비용 함수는 매칭 되는 영상의 일관된 밝기를 이용하여 좌, 우 영상 간 서로 대응하는 대응점을 추정하는 과정으로, 본 논문에서 다루는 매칭 비용함수는 화소 기반과 윈도우 기반의 매칭 비용 방법으로 크게 두 가지로 나눌 수 있다. 화소 기반의 방법으로는 절대 밝기차(the absolute intensity differences: AD)와 sampling-intensitive absolute differences of Birchfield and Tomasi (BT) 방법이 있고, 윈도우 기반의 방법으로는 차이 절대 값의 합(sum of the absolute differences: SAD), 차이 제곱 값의 합(sum of squred differences: SSD), 표준화 상호상관성(normalized cross-correlation: NCC), 제로 평균 표준화 상호 상관성(zero-mean normalized cross-correlation: ZNCC), census transform, the absolute differences census transform (AD-Census) 이 있다. 본 논문에서는 앞서 언급한 기존에 제안된 매칭 비용 함수들을 정확도와 시간 복잡도를 측정했다. 정확도 측면에서 AD-Census 방법이 평균적으로 가장 낮은 매칭 율을 보여줬고, 제로 평균 표준화 상호 상관성 방법은 non-occlusion과 all 평가 항목에서 가장 낮은 매칭 오차율을 보여 주지만, discontinuities 평가 항목에서는 블러 효과 때문에 높은 매칭 오차율을 보여 주었다. 시간 복잡도 측면에서는 화소 기반인 절대 밝기차 방법이 낮은 복잡도를 보여 주였다.
This paper presents the development of depth extraction algorithm or the 3D Endoscopic Data using a stereo matching method and depth calculation. The purpose of other's algorithms is to reconstruct 3D object surface and make depth map, but a one of this paper is to measure exact depth information on the base of [cm] from camera to object. For this, we carried out camera calibration.
스테레오 비전 시스템(stereo vision system)은 2차원 영상정보를 이용하여 3차원 깊이 정보를 획득하는 데 유용한 방법으로, 그동안 많은 연구가 진행되었다. 3차원 깊이 정보를 획득하기 위해서는 영상의 대응점을 찾아야 하는데, 속도와 정확성을 동시에 만족시키기가 어렵다. 이러한 문제를 해결하기 위해, 본 논문에서는 적응적 가중치(weight)를 적용한 cost aggregation 기반의 스테레오 정합 기법을 제안한다. 이 방법은 스테레오 영상의 특징을 이용하여 가중치를 획득하고, 색상정보, 밝기정보에 거리정보를 이용하여 가중치를 적용한 후, 이를 이용하여 대응점을 찾아 깊이 정보를 추출한다. 제안된 방법의 성능을 평가하기 위하여 ground truth가 존재하는 다양한 스테레오 영상을 이용하여 실험하였으며, 실험 결과 다양한 영상에서도 향상된 결과를 보였다.
스테레오 비전 시스템(stereo vision system)은 2차원 영상정보를 이용하여 3차원 깊이 정보를 획득하는 데 유용한 방법으로, 그동안 많은 연구가 진행되었다. 3차원 깊이 정보를 획득하기 위해서는 영상의 대응점을 찾아야 하는데, 속도와 정확성을 동시에 만족시키기가 어렵다. 이러한 문제를 해결하기 위해, 본 논문에서는 적응적 가중치(weight)를 적용한 cost aggregation 기반의 스테레오 정합 기법을 제안한다. 이 방법은 스테레오 영상의 특징을 이용하여 가중치를 획득하고, 색상정보, 밝기정보, 거리정보에 가중치를 적용한 후, 이를 이용하여 대응점을 찾아 깊이 정보를 추출한다. 제안된 방법의 성능을 평가하기 위하여 ground truth가 존재하는 다양한 스테레오 영상을 이용하여 실험하였으며, 실험 결과 다양한 영상에서도 향상된 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.