• Title/Summary/Keyword: manufacturing-cell design

Search Result 186, Processing Time 0.035 seconds

Minimizing the Number of Inter-Cell Movement of Parts with Consideration of a Machine-Cell Size (제한된 기계군의 크기하에서 부품의 이동을 최소로 하는 GT기법)

  • Park, Chang-Kyu
    • IE interfaces
    • /
    • v.12 no.4
    • /
    • pp.532-539
    • /
    • 1999
  • The first step to design a cellular manufacturing system is to make part-families and machine-cells. This process is called the machine-part grouping. This paper considers a machine-cell size when grouping machine-cells. By considering a machine-cell size, an unrealistically big size of machine-cell which may be caused by the chaining effect can be avoid. A heuristic algorithm which minimizes the number of inter-cell movement of parts considering a machine-cell size is presented. The effectiveness and performance of the proposed heuristic algorithm are compared with those of several heuristic algorithms previously reported. The comparison shows that the proposed heuristic algorithm is efficient and reliable in minimizing the number of inter-cell movement of parts and also prevents the chaining effect.

  • PDF

A Study on Magnesium Alloy Impeller Manufacturing Process using Finite Element Simulation (유한요소해석에 의한 마그네슘 합금의 임펠러 제조공정연구)

  • Kim, S.D.;Kang, S.H.;Kwon, Y.N.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.139-142
    • /
    • 2007
  • This study focuses on the manufacturing process of a magnesium alloy impeller used for the fuel cell car using the hot forging technology. The impeller has the very complicated shape with sharply curved blade and thus generally produced by mechanical machining or casting process. However, since these technologies give the high manufacturing cost or poor mechanical properties, the forging technology is required to make the high-quality impeller with the lower manufacturing cost. In order for production of the impeller by forging technology, the parametric studies using finite element analyses were carried out to find the optimal perform shape of impeller made of magnesium alloy AZ 31 and finally die design was proposed based on the simulation results.

  • PDF

Development of Good Manufacturing facility for Radiopharmaceuticals (우수방사성의약품 생산시설 개발)

  • Shin, Byung-Chul;Choung, Won-Myung;Park, San-Hyun;Lee, Kyu-Il;Park, Kyung-Bae;Park, Jin-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.2
    • /
    • pp.145-149
    • /
    • 2003
  • Manufacturing facilities of the pharmaceuticals must meet certain level of the cleanness required so that foreign substances such as dust, moisture, heat, microorganism, or virus do not contaminate the product. In case of radiopharmaceuticals for medical treatment and diagnosis, not only should the operators and environment be protected from radiation but also need to be isolated from the foreign contaminant. Therefore, manufacturing facilities for radiopharmaceuticals must satisfy the design standards of both hot cell and clean room which are specified by GMP. However, standards of maintaining negative pressure for preventing spread of radioactive contaminant in isolated facilities conflict with the standards of maintaining positive pressure for keeping cleanness. To solve this problem, air pressure of hot cell was designed lower than in the adjacent area to meet standards of the radiation safety. To keep higher cleanness in certain part of the hot cell for filling, minimal relative positive pressure allows. In order to effectively maintain the cleanness that is required for production of Tc-99m generator, which takes 70% of whole demand of radiopharmaceuticals, the rooms placed in each side of production room are used as a buffer area and three lead hot cells are installed in production room. In this research, we established the appropriate engineered design concept for Tc-99m generator manufacturing facility, which satisfies both GMP cleanness standard for preventing particles, bacteria, other contaminants and the regulations of radiation safety for supervising and controlling the amount of radiation exposure and exhausted radioactivity. And the concept of multi-barrier buffer zones is introduced to apply negative air pressure for hot cell with first priority and to continue relative positive air pressure for clean room.

An expert system for intelligent scheduling in flexible manufacturing cell (유연생산셀의 지능형 스케쥴링을 위한 전문가 시스템)

  • 전병선;박승규;이노성;안인석;서기성;이동헌;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1111-1116
    • /
    • 1993
  • In this study, we discuss the design of the expert system for the scheduling of the FMC(Flexible Manufacturing Cell) consisting of the several versatile machines. Due to the NP property, the scheduling problem of several machine FMC is very complex task. Thus we proposed the two heuritstic shceduling algorithms for solving the problem and constituted the algorithm based of solving the problem and constituted the algorithm base of ISS(Intelligent Scheduling System) using them. By the rules in the rule base, the best alternative among various algorithms in algorithm base is selected and applied in controlling the FMC. To show the efficiency of ISS, the scheduling output of ISS and the existent dynamic dispatching rule were tested and compared. The results indicate that the ISS is superior to the existent dynamic dispatching rules in various performance indexes.

  • PDF

The study on the interactive approach for the system layout design of Fexible manuafcturing cell (반송기능을 고려한 FMC의 구성설계에 관한 연구)

  • Kim, Jang-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.2
    • /
    • pp.16-27
    • /
    • 1986
  • The problems concerning FMC (Flexible manufacturing cell) system layout were treated in this paper. In fact, there being no clear definition about FMS (Flexible manufacturing system), it could be treated as the system adopting flexible-automation and FMS has been improving as a form of parts machining system. It was thought that the problems of combination of machine tool groups and parts family were important. Parts familly and machine tool groups were made up by means of multivariate analysis and the minimum trnsfer concept using correlation coefficient ($\rho$). And FMC system was layout by directional graph according to the FMS classifications.

  • PDF

Prophylactic and Therapeutic Applications of Genetic Materials Carrying Viral Apoptotic Function

  • Yang Joo-Sung
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.118-120
    • /
    • 2002
  • Genetic materials including DNA plasmid are effective delivery vehicle to express interesting gene efficiently and safely not to generate replication competent virus. Moreover, it has advantages to design a better vector and to simplify manufacturing and storage condition. To understand a possible pathogenic mechanism by a flavivirus, West Nile virus (WNV), WNV genome sequence was aligned to other pathogenic viral genome. Interestingly, WNV capsid (Cp) amino acid sequence has some homology to HIV-l Vpr protein. These proteins induce apoptosis in human cell lines as well as in vivo and cell cycle arrest. Therefore, DNA plasmid carrying apoptosis-inducing and cell cycle arresting viral proteins including a HIV-1 Vpr and a WNV Cp protein can be useful for anti-cancer therapeutic applications. This WNV Cp protein is an early expressed protein which can be a reasonable target antigen (Ag) for vaccine design. Immunization of a DNA construct encoding WNV Cp protein induces a strong Ag-specific humoral and Th1-type immune responses in animal. Therefore, DNA plasmid encoding apoptotic viral proteins can be useful tool for therapeutic and prophylactic applications.

  • PDF

Development of Virtual Prototype for Separator Winding and Inserting Machine of Battery Assembly Line (건전지 세퍼레이터 와인딩 및 삽입시스템의 Virtual Prototype 개발)

  • 정상화;차경래;신병수;나윤철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.727-730
    • /
    • 2002
  • Most of battery industries are growing explosively as a core strategy industry for the development of the semi-conductor, the LCD, and the mobile communication device. Dynamic characteristic analysis consists of dynamic behavior analysis and finite element analysis and is necessary for effective design of machines. In the dynamic behavior analysis, the displacement, velocity, applied force and angular velocity of each components are simulated according to each part. In the FEA, stress analysis, mode analysis, and frequency analysis are performed far each part. The results of these simulations are used for the design specification investigation and compensation for optimal design of cell manufacturing line. Virtual Engineering of the separator inserting machine on the automatic cell assembly line systems are modeled and simulated. 3D motion behavior is visualized under real-operating condition on the computer window. Virtual Prototype make it possible to save time by identifying design problems early in development, cut cost by reducing making hardware prototype, and improve quality by quickly optimizing full-system performance. As the first step of CAE which integrates design, dynamic modeling using ADAMS and FEM analysis using NASTRAN are developed.

  • PDF

Electrode Design for Electrode Formation and PV Module Integration Development (전극형성과 태양전지 모듈 일체화 기술 개발에 적용되는 태양전지 전극 설계 기술)

  • Park, Jinjoo;Jeon, Youngwoo;Jang, Minkyu;Kim, Minje;Lim, Donggun
    • Current Photovoltaic Research
    • /
    • v.9 no.4
    • /
    • pp.123-127
    • /
    • 2021
  • This study was on electrode design for the realization of a solar cell that combines electrode formation and module integration process to overcome printing limitations. We used the passivated emitter rear contact (PERC) solar cell. Wafer size was 156.75 mm ×156.75 mm. The fabricated cell results showed that the open-circuit voltage of 649 mV, short-circuit current density of 36.15 mA/cm2, fill factor of 68.5%, and efficiency of 16.06% with electrode conditions the 24BBs with the width 190 ㎛ and 90FBs with the width 45 ㎛. For improving efficiency, the characteristics of the solar cell were checked according to the change in the number of BBs and FBs and the change in line fine width. It is confirmed that the efficiency of the solar cell will be improved by increasing the number of FBs from 90 to 120, and increasing the line width of the FBs by about 10 ㎛ compared to the manufacturing solar cells.

Design Alterations of a Squaring & Grinding Machine for the Solar Cell Wafer to Suppress Vibrations (Solar Cell Wafer용 Squaring & Grinding Machine의 진동 억제를 위한 설계 변경)

  • Shin, Ho Beom;Ro, Seung Hoon;Yoon, Hyun Jin;Kil, Sa Geun;Kim, Young Jo;Kim, Geon Hyeong;Han, Dae Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.47-52
    • /
    • 2017
  • Solar cell industry requires high technologies to stabilize apparatuses for the wafer manufacturing. Vibrations of squaring & grinding machines are one of the most critical factors for causing residual stresses of ingots, which are the main reasons of the breakage in the following processes such as wire sawing, cleaning, and modularity. In this study, the structure of a squaring & grinding machine has been analyzed through experiments and computer simulations to figure out the ways to suppress the vibrations effectively, and further to minimize the breakage of wafers. The result shows that simple design changes of applying a few ribs can improve the stability of the machine.

  • PDF