• 제목/요약/키워드: manufacturing molds

검색결과 194건 처리시간 0.02초

전기 자동차 부스바 인서트 사출 자동화 시스템 개발 (Development of a injection molding automation system of busbar insert for the electric vehicle)

  • 김종수
    • Design & Manufacturing
    • /
    • 제18권2호
    • /
    • pp.35-40
    • /
    • 2024
  • Injection molding is a process widely used across various industries for molding plastics, and it is the most commonly applied process in root industries utilizing molds. Among the different types of injection molding, insert injection molding, where busbars are used as inserts, is increasingly being applied in the electric vehicle industry. However, currently, the insert injection molding process is manually performed, with workers placing insert components by hand before injection molding. This results in issues related to productivity, safety, and quality. Additionally, there is a growing demand for automation of such production lines due to hazardous working conditions, economic difficulties in the manufacturing industry, and the decline in the labor force caused by an aging population. This study focuses on the application of an automated system for the insert injection molding process used in electric vehicles. The development of an automated system for the transport and insertion of insert components, as well as the inspection and stacking processes after injection, has resulted in over a 25% improvement in productivity and more than a 27% reduction in defect rates.

기계식 마이크로 머시닝을 이용한 마이크로 형상의 특성과 비용 평가 (Fabrication and Characterization of Micro parts by Mechanical Micro Machining: Precision and Cost Estimation)

  • 강혁진;최운용;안성훈
    • 한국정밀공학회지
    • /
    • 제24권1호
    • /
    • pp.47-56
    • /
    • 2007
  • Recently, demands on mechanical micro machining technology have been increased in manufacturing of micro-scale precision shapes and parts. The main purpose of this research is to verify the accuracy and cost efficiency of the mechanical micro machining. In order to measure the precision and feasibility of mechanical micro machining, various micro features were machined. Aluminum molds were machined by a 3-axis micro stage in order to fabricate microchips with $200{\mu}m$ wide channel for capillary electrophoresis, then the same geometry of microchip was made by injection molding. To evaluate the cost efficiency of various micro manufacturing processes, cost estimation for mechanical micro machining was conducted, and actual costs of microchips fabricated by mechanical micro machining, injection molding, and MEMS (Micro electro mechanical system) were compared.

슈퍼커패시터 양산화를 위한 하이브리드 복합금형 개발 (Development of Hybrid Composite Die for the Production of the Supercapacitor)

  • 권혁홍
    • 한국기계가공학회지
    • /
    • 제14권1호
    • /
    • pp.105-110
    • /
    • 2015
  • In this study, a high-speed procedure to be used in composite molding technology is developed for the production of a hybrid supercapacitor in a progressive and revolutionary current in a production system, as are the related operating conditions. Mold parts with solid modeling, the ease of programming of future mold product designs, tolerance management, and pre-explode tests by the building of a progressive die design system using Cimatron_E10 Die Design Software for the strip layout are done. The capacity of the super-hybrid composite mold design will save time and money through its verification of the manufacture of molds. We plan to apply this to future related products for production cost savings of more than 30% achieved by considering the components of the production costs, labor, and material costs of production as compared to conventional production methods.

금속시제품의 신속제작을 위한 공정기술개발 (Process developments for direct manufacturing of metallic prototypes)

  • 송용억
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.605-609
    • /
    • 1996
  • In order to ensure that the prototype corresponds as closely as possible to the serial part subsequently to be manufactured, the materials used for the prototye should, wherever possible, be identical to those used in production. In case of metallic parts, however, this demand is still not completely fulfilled by the available Rapid Prototyping techniques. Since only conventional manufacturing processes caan currentlybe used to produce metallic prototypes directly, these are extremely cost and labor intensive. For this reason, work is being undertaken worldwide to develop Selective Laser Sintering (referred to SLS) and Laser Generating for direct manufacture of metallic parts. In this paper the results of both process developments are reported. As the present results show, they have great application potentials in prototyping tools, especially molds and dies.

  • PDF

RTM공법을 이용한 승용차용 복합재료 휠의 표면정도 향상 및 개발 (Improvement of Surface Quality and Development of Composite Wheel for Passenger Cars Manufactured by RTM)

  • 김포진;이대길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.54-57
    • /
    • 2003
  • Since passenger cars require five wheels including a spare, the weight reduction of wheels without sacrificing performance is important. Recently, the structured components of cars made of steel are replaced by composites. plastics and other nonmetallic materials such as aluminum and magnesium for weight reduction. From these new tried materials are most promising due to their high specific stiffness and specific strength. The composites manufactured by resin transfer molding (RTM) process has not only low cost for the manufacturing but also reduces the lead time and development because the molds for RTM is easy to manufacture. In this work, composite wheels for passenger cars were designed and manufactured by RTM process. Since surface quality of wheels is important for passenger cars, the optimal stacking sequence for composite wheels was selected considering surface quality and mechanical properties. Also, the manufacturing method for the composite mold was depicted.

  • PDF

Geometric Modeling and Five-axis Machining of Tire Master Models

  • Lee, Cheol-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.75-78
    • /
    • 2008
  • Tire molds are manufactured by aluminum casting, direct five-axis machining, and electric discharging machining. Master models made of chemical wood are necessary if aluminum casting is used. They are designed with a three-dimensional computer-aided design system and milled by a five-axis machine. In this paper, a method for generating and machining a tire surface model is proposed and demonstrated. The groove surfaces, which are the main feature of the tire model, are created using a parametric design concept. An automatically programmed tool-like descriptive language is presented to implement the parametric design. Various groove geometries can be created by changing variables. For convenience, groove surfaces and raw cutter location (CL) data are generated in two-dimensional drawing space. The CL data are mapped to the tread surface to obtain five-axis CL data to machine the master model. The proposed method was tested by actual milling using the five-axis control machine. The results demonstrate that the method is useful for manufacturing a tire mold.

볼 엔드밀을 이용한 금형 구면 가공의 표면품질 향상에 관한 연구 (Surface Quality Improvements on the Spherical Shaped Mold using Ball End Milling)

  • 윤일우;황종대
    • 한국기계가공학회지
    • /
    • 제19권3호
    • /
    • pp.71-76
    • /
    • 2020
  • Various machining methods are being studied to improve the processing quality of the spherical R shape in press die. In this paper, we confirmed that changes in machining quality were associated with changes in cutting direction, path, and cutting angle, which are commonly used in the machining of molds. We obtained a surface roughness graph with each condition change in one specimen using an instrument that measured geometry and surface roughness simultaneously. The results of the study showed that the best surface roughness in the finish cut of the spherical surface was obtained using upward pick feed machining.

연삭가공에서 절삭유 에어로졸 측정평가에 관한 연구 (A Study on the Analysis of Cutting Fluid Aerosol in Grinding Process)

  • 황준;황덕철;우창기;정의식
    • 한국공작기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1-6
    • /
    • 2005
  • Machining is a one of the broadly used manufacturing process to produce the parts, products and various molds and dies. The environmental impact due to aerosol generation via atomization process is a major concern associated with environmental consciousness. This paper presents the experimental results to analyze the characteristics of cutting fluid aerosol generation in grinding process. Experimental results show that the generated fine aerosol which particle size less than 10micron appears near worker's breath zone under given operational conditions. The aerosol concentration is much higher enough to affect human health risk with its generated aerosol quantities. This quantitative analysis can be provided the basic knowledge f3r further research for environmentally conscious machining technology developments.

고속가공을 이용한 자동차부품 시작 금형 가공 (The Prototypal Molds Making for Car Parts using High Speed Machining)

  • 이종현;이동주;신보성;최두선;이응숙;이득우;김석원
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.355-360
    • /
    • 2000
  • Recently, to be satisfied the consumer's demand the life cycle and the lead time of product is to be shorted. So it is important to reduce the time and cost in manufacturing prototypal mold. These days, in order to reduce the lead time and cost high speed machining is highlighted. In the paper, using the high speed machining and aluminum-7075, the fundamental experiment is implemented in the change of cutting force, machining time, surface characteristic according to the tool path. And then the prototypal mold of the automatic knob is machined.

  • PDF

아크 용사를 이용한 쾌속 금형 제조 기술 (A study on rapid tooling technology using thermal spray process)

  • 김경하;김선경;유영은;제태진;최두선
    • Design & Manufacturing
    • /
    • 제2권2호
    • /
    • pp.20-24
    • /
    • 2008
  • Recently, the study for production technology is focused on cycle time reduction as various products are manufactured. In order to manufacture tool and die, rapid prototyping and rapid tooling are researched. Stereolithography apparatus, selective laser sintering, 3D printing, laminated object manufacturing are developed in rapid prototype. The purpose of this study is to develop rapid tooling technology using thermal spray process. This technology is not well-known to korea, but this study will be contributed in development of domestic molds industry through continuous research and development.

  • PDF