• 제목/요약/키워드: manufacturing molds

검색결과 193건 처리시간 0.035초

공구 형상 및 자세에 따른 금형 자유곡면 가공품질 향상에 관한 연구 (Improvement of Mold-Sculptured Surface Quality Based on Tool Shape and Posture)

  • 윤일우;황종대;고대철
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.100-106
    • /
    • 2021
  • This paper presents a study on the improvement of the machining quality of sculptured-surfaces of molds according to the shape and posture of the tool. In the existing 3-axis machining, the methods using the ball end-mill and radius end-mill were analyzed for various cutting patterns and compared with those of the 5-axis machining. It was observed that the 5-axis machining using a ball end-mill obtained the finest surface roughness, and for the 3-axis machining, the optimal results were obtained for the one-way machining using a radius end-mill.

드로잉 공정에서 소재 유입에 영향을 미치는 인자에 관한 연구 (A study on the factors affecting to material inflow in the drawing process)

  • 이성민;신진희;김경아;이춘규
    • Design & Manufacturing
    • /
    • 제16권2호
    • /
    • pp.39-45
    • /
    • 2022
  • Sheet Metal Forming by Press Forming Process takes a lot of time and cost from mold design to manufacturing. Therefore, all of die-makers are continuously conducting research to reduce the number of mold processes or the size of blanks to reduce costs. In the case of Forming complex shapes such as automobile component, wrinkles and cracks occur, so draw beads are used. Draw beads play an important role in suppressing the inflow of materials and minimizing the size of blanks. Factors that affect material flow include draw bead, blank holding pressure, lubricant, and surface roughness of punch and die. Most of the factors affect friction. In this study, after classifying circular beads and rectangular beads in cylindrical drawing molds using the AutoForm analysis program, the factors affecting the material inflow were considered.

유한요소법을 이용한 세미 파인-블랭킹 금형 해석에 관한 연구 (A Study of Semi Fine-blanking Mold Analysis using Finite Element Method)

  • 이상훈;송기환;손창우;서형진;서태일
    • Design & Manufacturing
    • /
    • 제10권1호
    • /
    • pp.51-54
    • /
    • 2016
  • Metal sheet forming has been commonly used as the core technology in manufacturing parts of automobiles. It guarantees the highest production rate due to the process of mass production employing the press die. For precision of the product, the accuracy of the molds and its mechanic structures are considered as essential factors. One of these is fine blanking, which is utilized for the production of the metal sheet spring, with which clear sheer surfaces can be achieved in one operation from the materials. However, the current designs of press dies perform the forming analysis with the molds of rigid body, so they are focused on weight lightening by a rule of thumb. Therefore, this paper practice structural analysis about developing the semi fine-fine blanking technology. The semi fine-blanking can be run through the combination of the hydraulic cylinders and normal presses, so this paper analyze the amount of deformation according to the oil pressure. In addition, based on the plasticity of 50CrV4, the materials of the mold parts, the structural analysis and life analysis are proceeded, so they are expected to be useful as data for manufacturing the mold.

휴대폰 후면 커버의 공정시간 단축에 따른 치수 편차의 최적화에 관한 연구 (A Study on the Optimization of the Dimensional Deviation due to the Shortening of the Cycle Time for Rear Cover of Mobile Phone)

  • 김주권;김종선;이준한;곽재섭
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.117-124
    • /
    • 2017
  • In this study, we investigated the optimization of process conditions by using the Six Sigma process, design of experiment (DOE) method and response surface method (RSM) to resolve dimensional deviation and appearance problems arising from the shortened process time of the mobile phone rear cover. The analysis of the trivial many was performed by 2-sample T-test and cooling time, and mold temperature and packing pressure were selected as the vital fews affecting the overall width of the product. The optimal conditions of the process were then studied using the DOE and the RSM. We analyzed the improvement effects by applying the selected optimal conditions to the production process and the results showed that the difference between the mean value and target value of the overall width stood at 0.01 mm, an improvement of 88.89% compared to current process that fell within the range of standard dimension. The short-term process capability stood at $4.77{\sigma}$, which implied an excellent technology level despite a decrease by $0.22{\sigma}$ compared to the current process. The difference in process capability decreased by $2.44{\sigma}$ to $0.41{\sigma}$, showing a significant improvement in management capability. Ultimately, the process time of the product was shortened from 18.3 seconds in the current process to 13.65 seconds, resulting in a 34.07% improvement in production yield.

진공흡착공정을 이용한 자동차 내장부품의 표피재 접착기술에 관한 연구 (The Study on Skin Adhesive Technology for Automotive Interior Using the Vacuum Suction Process)

  • 김기선;김성화
    • 한국산학기술학회논문지
    • /
    • 제12권3호
    • /
    • pp.1045-1050
    • /
    • 2011
  • 본 연구는 자동차 내장 부품에서 표피재에 열을 가하여 금형내에서 엠보싱을 생성하는 새로운 압착방법을 제안한다. 엠보싱 무늬가 없는 표피재를 상부 금형에서 진공으로 흡입시켜 흡입력에 의하여 무늬를 성형한 후 금형을 닫아 사출물에 압착시키는 가열 압착 공법으로 엠보싱 무늬의 손상을 방지할 수 있다. 이 검증실험을 위하여 금형과 시험장치를 개발하여 시작품을 제작한 후 실험을 통하여 성능을 분석 평가하였다.

균일 냉각을 고려한 Thick-Wall 형상의 플라스틱 렌즈 쾌속 금형 제작 (Manufacturing of Rapid Tooling for Thick-Wall Plastic Lens Mold with Conformal Cooling Channel)

  • 박형필;차백순;이상용;최재혁;이병옥
    • Design & Manufacturing
    • /
    • 제1권1호
    • /
    • pp.27-32
    • /
    • 2007
  • In the optical application demand for high quality lens is increasing. Plastics lenses are demanded more than glass lenses for large size lenses as well as micro-size lenses. It is difficult to apply typical straight cooling channels of injection mold to lens molding due to its non-uniform temperature distribution. In this study, we manufactured molds for plastic lenses with the conventional cooling channels and conformal cooling channels produced by the DMLS process. We evaluated cooling performance for the 2 molds by injection molding experiment. Also, uniformity of the temperature distribution was tested by infrared camera and temperature monitoring. We confirmed that the cooling performance and temperature uniformity with the conformal cooling channels is much improved from the ones with the conventional. The cooling time with the conformal cooling channels was reduced 30% compared with the conventional cooling channels.

  • PDF

3D scanning based mold correction for planar and cylindrical parts in aluminum die casting

  • Seno, Takashi;Ohtake, Yutaka;Kikuchi, Yuji;Saito, Noriaki;Suzuki, Hiromasa;Nagai, Yukie
    • Journal of Computational Design and Engineering
    • /
    • 제2권2호
    • /
    • pp.96-104
    • /
    • 2015
  • Aluminum die casting is an important manufacturing process for mechanical components. Die casting is known to be more accurate than other types of casting; however, post-machining is usually necessary to achieve the required accuracy. The goal of this investigation is to develop machining- free aluminum die casting. Improvement of the accuracy of planar and cylindrical parts is expected by correcting metal molds. In the proposed method, the shape of cast aluminum made with the initial metal molds is measured by 3D scanning. The 3D scan data includes information about deformations that occur during casting. Therefore, it is possible to estimate the deformation and correction amounts by comparing 3D scan data with product computer-aided design (CAD) data. We corrected planar and cylindrical parts of the CAD data for the mold. In addition, we corrected the planar part of the metal mold using the corrected mold data. The effectiveness of the proposed method is demonstrated by evaluating the accuracy improvement of the cast aluminum made with the corrected mold.

금형재료용 주철강의 복합열처리 특성 (Combined Heat Treatment Characteristics of Cast Iron for Mold Materials)

  • 황현태;소상우;김종도
    • 한국재료학회지
    • /
    • 제21권7호
    • /
    • pp.364-370
    • /
    • 2011
  • Currently, there are two main issues regarding the development of core technologies in the automotive industry: the development of environmentally friendly vehicles and securing a high level of safety in the event of an accident. As part of the efforts to address these issues, research into alternative materials and new car body manufacturing and assembly technologies is necessary, and this has been carried out mainly by the automotive industries. Large press molds for producing car body parts are made of cast iron. With the increase of automobile production and various changes of design, the press forming process of car body parts has become more difficult. In the case of large press molds, high hardness and abrasive resistance are needed. To overcome these problems, we attempted to develop a combined heat treatment process consisting of local laser heat treatment followed by plasma nitriding, and evaluated the characteristics of the proposed heat treatment method. From the results of the experiments, it has been shown that the maximum surface hardness is 864 Hv by the laser heat treatment, 953 Hv by the plasma nitriding, and 1,094 Hv by the combined heat treatment. It is anticipated that the suggested combined heat treatment can be used to evaluate the durability of press mold.

미세 지립 페이퍼 공구와 롤투플레이트 압입공정을 이용한 마이크로 랜덤 패턴의 성형특성 (Forming Properties of Micro Random Pattern Using Micro Abrasive Paper Tool by Roll to Plate Indentation Method)

  • 정지영;제태진;문승환;이재령;최대희;김민주;전은채
    • 한국정밀공학회지
    • /
    • 제33권5호
    • /
    • pp.385-392
    • /
    • 2016
  • Recently in the display industry, demands for high-luminance and resolution of display devices have been steadily increasing. Generally, micro linear patterns are applied to an optical film in order to improve its properties of light. However, these patterns are easily viewed to eyes and moire phenomenon can be occurred. Micro random patterns are proposed as a method to solve these problems, increasing light-luminance and light-diffusion. However, conventional pattern manufacturing technologies have long processing times and high costs making it difficult to apply to large area molds. In order to combat this issue, micro-random patterns are formed by using a roll to plate indentation method along with abrasive paper tools composed of AlSiO2, SiC, and diamond grains. Also, forming properties, such as size and fill-factor of random patterns, are analyzed depending on type, mesh of abrasive paper tools, and indentation forces.

쾌속조형 듀라폼몰도와 저융점합금을 이용한 주얼리용 마스터패턴 제작에 관한 연구 (Study of Manufacturing Jewelry Master Pattern by Using the DuraForm Rapid Prototyping Mold and the Low Melting Alloy)

  • 주영철;송오성
    • 한국주조공학회지
    • /
    • 제22권5호
    • /
    • pp.265-270
    • /
    • 2002
  • A novel jewelry master pattern manufacturing process which reduce manufacturing steps by employing a Duraform rapid prototyping mold and a low melting alloy has been suggested. The novel process follows the steps of 'jewelry 3D CAD design ${\rightarrow}$ Durafrom RP mold ${\rightarrow}$ low melting alloy master pattern' while the previous process follows more complicated steps of 'jewelry idea sketch ${\rightarrow}$ detailed drawing ${\rightarrow}$ wax carving ${\rightarrow}$ flask ${\rightarrow}$ silver master pattern.' An upper and a lower part of molds have been manufactured of Duraform powder, of which melting point is $190^{\circ}C$. A maser pattern was manufactured by pouring a low melting alloy of Pb-Sn-Bi-Cd, so called Woods Metal, of which melting point is $70^{\circ}C$, into the mold. The master pattern is a shape of a disk of 20mm diameter that contains various design factors. The variations of dimensions, surface roughness, surface pore ratio were measured by an optical microscope, a surface roughness profilometer, and a Rockwell hardness tester. The pattern made of were maeasured by an optical microscope, a surface roughness profilometer, and a Rockwell hardness tester. The pattern made of low melting alloy has sufficient surface hardness, and surface pore ratio to be used as the jewelry master pattern.