• 제목/요약/키워드: manufacturing method

검색결과 7,221건 처리시간 0.057초

PCB 제조공정을 위한 화학약품 용액의 실시간 모니터링 시스템 (Real-time Chemical Monitoring System using RGB Sensor toward PCB Manufacturing)

  • 안종환;이석준;김이철;홍상진
    • 한국전기전자재료학회논문지
    • /
    • 제21권5호
    • /
    • pp.397-401
    • /
    • 2008
  • Most of the topic in PCB industry was about increasing the volume of product for the development of electronics in numerous industrial application area. However, it has been emerged that yield improvement quality manufacturing via detecting any suspicious process in order to minimize the scrapped product and material waste. In addition, recently, restriction of hazardous substances (RoHS) claims that electronic manufacturing environment should reduce the harmful chemicals usage, thus the importance of monitoring copper etchant and detecting any mis-processing is crucial for electronics manufacturing. In this paper, we have developed real-time chemical monitoring system using RGB sensor, which is simpler but more accurate method than commercially utilized oxidation reduction potential (ORP) technique. The developed Cu etchant monitoring system can further be utilized for copper interconnect process in future nano-semiconductor process.

Good manufacturing practice of radiopharmaceuticals in Korea

  • Oh, Seung Jun
    • 대한방사성의약품학회지
    • /
    • 제1권2호
    • /
    • pp.98-103
    • /
    • 2015
  • Good manufacturing Practice (GMP) regulation for diagnostic and therapeutic radiopharmaceuticals was prepared at 2014. The mandatory GMP regulation becomes effective on $1^{st}$, July 2015,with two years of grace periods. Korean radiopharmaceuticals GMP regulation was consisted of quality management, personnel, premise and facility, documentation, production, quality control and self-audit and they have a very similar structure to European Union and PIC/S GMP regulation. Here, we describe detailed description of GMP regulation each part and application to radiopharmaceuticals production. And we also compare Korea, Japan and USA radiopharmaceuticals GMP regulation. GMP is a method to maintain quality of radiopharmaceuticals in daily production and it must be embedded on the manufacturing operation and management.

퍼지 비선형 혼합정수계획에 의한 제조셀 형성 (-Manufacturing Cell Formation with Fuzzy Nonlinear Mixed-Integer Programming-)

  • 윤연근;남현우;이상완
    • 산업경영시스템학회지
    • /
    • 제23권54호
    • /
    • pp.65-75
    • /
    • 2000
  • Cellular manufacturing(CM) is a philosophy and innovation to improve manufacturing productivity and flexibility. Cell formation(CF), the first and key problem faced in designing an effective CM system, is a process whereby parts with similar design features or Processing requirements are grouped into part families, and the corresponding machines into machine cells. Cell formation solutions often contain exceptional elements(EEs). EE create interactions between two manufacturing cells. A policy dealing with EEs considers minimizing the total costs of three important costs; (1)intercellular transfer (2)machine duplication and (3)subcontracting. This paper presents an effective cell formation method with fuzzy nonlinear mixed-integer programming simultaneously to form manufacturing cells and to minimize the total costs of eliminating exceptional elements.

  • PDF

On the forced vibration of high-order functionally graded nanotubes under the rotation via intelligent modeling

  • Liu, Yang;Wang, Xiaofeng;Liu Li;Wu, Bin;Yang, Qin
    • Advances in nano research
    • /
    • 제13권1호
    • /
    • pp.47-61
    • /
    • 2022
  • The present research investigates the dynamic behavior of a rotating functionally graded (FG) nonlocal cylindrical beam. The cylindrical beam is mathematically modeled via third-order beam theory linked with nonlocal strain gradient theory. The tube structure is made of functionally graded materials composed of Aluminum oxide coated on the Nickel, which the mechanical properties vary in the tube radius direction according to the power law. The bending harmonic force is applied in the tube length middle. The nonlocal spinning equations of the tube are derived via the energy method of the Hamilton principle, and they are solved via a robust numerical procedure for different boundary conditions. The main application of the rotating nanostructures is for the production of small-scale motors and devices and the drug-delivery application, the presented results can help the researcher have a better view regarding the different conditions.

Production Equipment Monitoring System Based on Cloud Computing for Machine Manufacturing Tools

  • Kim, Sungun;Yu, Heung-Sik
    • 한국멀티미디어학회논문지
    • /
    • 제25권2호
    • /
    • pp.197-205
    • /
    • 2022
  • The Cyber Physical System(CPS) is an important concept in achieving SMSs(Smart Manufacturing Systems). Generally, CPS consists of physical and virtual elements. The former involves manufacturing devices in the field space, whereas the latter includes the technologies such as network, data collection and analysis, security, and monitoring and control technologies in the cyber space. Currently, all these elements are being integrated for achieving SMSs in which we can control and analyze various kinds of producing and diagnostic issues in the cyber space without the need for human intervention. In this study, we focus on implementing a production equipment monitoring system related to building a SMS. First, we describe the development of a fog-based gateway system that links physical manufacturing devices with virtual elements. This system also interacts with the cloud server in a multimedia network environment. Second, we explain the proposed network infrastructure to implement a monitoring system operating on a cloud server. Then, we discuss our monitoring applications, and explain the experience of how to apply the ML(Machine Learning) method for predictive diagnostics.

마이크로 다이레스 성형 시스템을 이용한 금속박판소재의 마이크로 패턴 성형 (Micro pattern forming on the metal thin foil Using micro dieless forming system)

  • 이혜진;이형욱;박진호;이낙규
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.379-382
    • /
    • 2007
  • The MEMS (Micro Electro Mechanical Systems) process is used in a micro/nano pattern manufacturing method. This method is based on the lithography technology. But the MEMS process has some problems such as complicated process, long processing time and high production costs. Many researchers are doing research in substitute manufacturing method to work out a solution to these problems. In this paper, we apply a dieless incremental forming technology to a substitute method of MEMS process. This dieless forming technology is using in the commercial scale sheet forming such as a prototype of automobile sheet parts. 5-axes CNC (Computerized Numeric Control) method are applied in this system to get a micro-scale dieless forming results. These 5-axes system are composed of precision AC servo motor stages (4-axes) and PZT actuator (1-axis). A PZT actuator is used in a precision actuating axis because it can be operated in the nano scale stroke resolution. This micro dieless incremental forming system has the advantage of minimization in manipulating distance and working space. As equipment and tools become smaller in size, minute inertia force and high natural frequency can be obtained. Therefore, high precision forming performance can be obtained. This allows the factory to quickly provide the customer with goods because the manufacturing system and process are reduced. To construct this micro manufacturing system, many technologies are necessary such as high stiffness frame, high precision actuating part, structural analysis, high precision tools and system control. To achieve the optimal forming quality, the micro dieless forming system is designed and made with high stiffness characteristic.

  • PDF

Analysis of Cutting Properties with Reference to Amount of Coolant used in an Environment-Conscious Turning Process

  • Yang, Seung-Han;Lee, Young-Moon;Kim, Young-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2182-2189
    • /
    • 2004
  • In the recent years, environmentally conscious design and manufacturing technologies have attracted considerable attention. The coolants, lubricants, solvents, metallic chips and discarded tools from manufacturing operations will harm our environment and the earth's ecosystem. In the present work, the Tukey method of multiple comparisons is used to select the minimum level of coolant required in a turning process. The amount of coolant is varied in 270 designed experiments and the parameters cutting temperature, surface roughness, and specific cutting energy are carefully evaluated. The effects of coolant mix ratio as well as the amount of coolant on the turning process are studied in the present work. The cutting temperature and surface roughness for different quantity of coolant are investigated by analysis of variance (ANOVA) - test and a multiple comparison method. ANOVA-test results signify that the average tool temperature and surface roughness depend on the amount of coolant. Based on Tukey's Honestly Significant Difference (HSD) method, one of the multiple comparison methods, the minimum level of coolant is 1.0 L/min with 2% mix ratio in the aspect of controlling tool temperature. F-test concludes that the amount of coolant used does not have any significant effect on specific cutting energy. Finally, Tukey method ascertains that 0.5 L/min with 6% mix ratio is the minimum level of coolant required in turning process without any serious degradation of the surface finish. Considering all aspects of cutting, the minimum coolant required is 1.0 L/min with 6% mix ratio. It is merely half the coolant currently used i.e. 2.0 L/min with 10% mix ratio. Minimal use of coolant not only economically desirable for reducing manufacturing cost but also it imparts fewer hazards to human health. Also, sparing use of coolant will eventually transform the turning process into a more environment-conscious manufacturing process.

A novel method to aging state recognition of viscoelastic sandwich structures

  • Qu, Jinxiu;Zhang, Zhousuo;Luo, Xue;Li, Bing;Wen, Jinpeng
    • Steel and Composite Structures
    • /
    • 제21권6호
    • /
    • pp.1183-1210
    • /
    • 2016
  • Viscoelastic sandwich structures (VSSs) are widely used in mechanical equipment, but in the service process, they always suffer from aging which affect the whole performance of equipment. Therefore, aging state recognition of VSSs is significant to monitor structural state and ensure the reliability of equipment. However, non-stationary vibration response signals and weak state change characteristics make this task challenging. This paper proposes a novel method for this task based on adaptive second generation wavelet packet transform (ASGWPT) and multiwavelet support vector machine (MWSVM). For obtaining sensitive feature parameters to different structural aging states, the ASGWPT, its wavelet function can adaptively match the frequency spectrum characteristics of inspected vibration response signal, is developed to process the vibration response signals for energy feature extraction. With the aim to improve the classification performance of SVM, based on the kernel method of SVM and multiwavelet theory, multiwavelet kernel functions are constructed, and then MWSVM is developed to classify the different aging states. In order to demonstrate the effectiveness of the proposed method, different aging states of a VSS are created through the hot oxygen accelerated aging of viscoelastic material. The application results show that the proposed method can accurately and automatically recognize the different structural aging states and act as a promising approach to aging state recognition of VSSs. Furthermore, the capability of ASGWPT in processing the vibration response signals for feature extraction is validated by the comparisons with conventional second generation wavelet packet transform, and the performance of MWSVM in classifying the structural aging states is validated by the comparisons with traditional wavelet support vector machine.

IoT 기기 재설계를 위한 적층제조를 활용한 부품병합 설계 방법에 대한 연구 (A Study of Design for Additive Manufacturing Method for Part Consolidation to Redesign IoT Device)

  • 김삼연
    • 사물인터넷융복합논문지
    • /
    • 제8권2호
    • /
    • pp.55-59
    • /
    • 2022
  • 최근 4차 산업혁명으로 인하여, 고객 제품형 제품 설계 및 새로운 서비스 개발을 위하여 IoT 기술이 주목받고 있다. 최근 적층제조 기술은 IoT 센서를 직접 제작하거나, 센서를 포함한 기기를 만드는 분야에 다양하게 활용되고 있다. IoT 기기를 적층제조를 활용하여 제작시, 적층제조 고유의 설계 장점을 활용하기 위해 다양한 부품들을 병합하는 설계 방법론이 큰 관심을 받고 있다. 부품병합을 통해 조립 공정을 단축하고, 부품 경량화 등의 장점을 이룰 수 있기 때문이다. 따라서, 본 연구에서는 적층제조를 활용한 부품병합을 지원하기 위한 설계 방법론을 개발하였다. 이를 통해 제품의 기능 및 제품 내 부품의 기능과 물리적 연결성을 분석한 제품 아키텍쳐를 생성하고, 인접한 기능들 및 부품을 Girvan Newman 알고리즘을 활용하여, 최종 부품병합 후보군을 선정하도록 지원한다. 제안한 설계 방법론을 검증하고자 사례연구를 통해 적층제조로 출력된 전기 자전거의 부품병합과정을 분석하였다.

파라미터 추정을 위한 민감도 기법의 응용에 관한 연구 (An Application of the Sensitivity Method for Parameter Estimation)

  • 백문열
    • 한국생산제조학회지
    • /
    • 제9권2호
    • /
    • pp.112-118
    • /
    • 2000
  • This paper deals with the application of sensitivity method to the parameter estimation for the dynamic analysis of gener-al mechanical system. In this procedure we take the derivatives of the given system with respect to a certain parameter and use this information to implement the steepest descent method. This paper will give two examples of this technique applied to simple vehicle models. This paper will give two examples of this technique applied to simple vehicle models. Simulation results show excellent convergence and accuracy of parameter estimates.

  • PDF