• Title/Summary/Keyword: manual cutting

Search Result 74, Processing Time 0.019 seconds

Controlling Mikania micrantha HBK: How effective manual cutting is?

  • Rai, Rajesh Kumar;Sandilya, Madan;Subedi, Rajan
    • Journal of Ecology and Environment
    • /
    • v.35 no.3
    • /
    • pp.235-242
    • /
    • 2012
  • Mikania micrantha, a neo-tropical vine, is spreading rapidly in the tropical part of Nepal and is now threatening the rural ecosystem including biodiversity and rural livelihoods. However, no attempt has been made to control the spread of M. micrantha. As a result, the vines are spreading freely and rapidly. After a thorough literature review and assessment of forest management practices, we proposed a manual cutting method, as it suits the Nepalese situation for several reasons: required labor is readily available, as local communities are managing forest patches, and the method does not have any potential adverse effects on non-target native species. Experimental plots were laid out in August 2011 to examine the effectiveness of manual cutting. Two different site types based on canopy coverage were selected and divided into three blocks based on cutting strategy. Four treatments were assigned across the experimental plots following a complete block design. We harvested above-ground biomass according to the assigned treatment. The results suggested that there should be at least two consecutive cuttings within a 3-week interval before flowering, and that three consecutive cuttings resulted in 91% mortality of the vines. In addition, cutting promoted regeneration of native plant species. Employing regular cutting operations can modify understory shade enhancing regeneration of native species, which is a desirable condition to constrain proliferation of M. micrantha. Periodic cuttings reduced the competitiveness of M. micrantha regardless of canopy openness, but native ground cover should be retained.

Development of Exit Burr Identification Algorithm on Multiple Feature Workpiece and Multiple Tool Path (복합형상 및 다중경로에 대한 Exit Burr 판별 알고리듬의 개발- 스플라인을 포함한 Exit Burr의 해석 -)

  • Kim, Ji-Hwan;Lee, Jang-Beom;Kim, Young-Jin
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.247-252
    • /
    • 2005
  • In the automated production environment in the present days, the minimization of manual operation becomes a very important factor in increasing the efficiency of the production system. The exit burr produced through the milling operation on the edge of workpiece usually requires manual deburring process to enhance the level of precision of the resulting product. So far, researchers have developed various methods to understand the formation of exit burr in cutting process. One method to analytically identify the formation of exit burr was to use the geometrical information of CAD and CAM data used in automated machining. This method, in turn, generated the information resulting from the analysis such as burr type, cutting region, and exit angle. Up to now, the geometrical data were restricted to the single feature and single path. In this paper, a method to deal with the complicated geometric features such as line segment, arc, hole, and spline will be presented and validated using the field data. This method also deals with the complex workpiece shape which is a combination of multiple features. As for the cutting path, multiple tool path is analyzed in order to simulate the real cutting process. All this analysis is combined into a Windows based software and real data are used to validate the program in the conclusion.

Analysis of Red Pepper Calyx Cutting Using a Rotational Cutter (회전날을 이용한 홍고추의 꼭지 절단 경향 분석)

  • 이승규;송대빈;정의권
    • Journal of Biosystems Engineering
    • /
    • v.28 no.3
    • /
    • pp.209-216
    • /
    • 2003
  • Red pepper calyx cutting devices using a impacting force by a rotational cutter were devised and tested to obtain the fundamental data for development of a calyx removal unit. Fresh red peppers with 80∼87%(w.b.) of initial moisture contents were used as experimental materials. Square and wire type of rotational cutters were used to cut the red pepper calyx and the fresh red peppers were fed into the device both manually and automatically. Three rotational speeds of 250, 500, 700rpm were selected for a square, and 1000, 1500, 1800rpm for a wire type cutter respectively. Four types of red pepper fixing unit were used in manual feeding. The cutting rate of the square type cutter was over 50% regardless the shape and specification of the cutter. For the wire type cutter, the copper wire and nylon chord could not be applied to cut the red pepper calyx because of the low cutting rate. But for the fine wire, the cutting rate was higher and the cutting mechanism was more steady than copper wire and nylon chord. The cutting rate of automatic feeding and wire type cutting unit was about 70% for all levels of the rotational speed. The cutting rate was highly related to the impacting point of red pepper in carrier box. To increase the cutting rate using the rotational cutter, a proper device and mechanism was required to keep the impacting point consistently.

매뉴얼 프로그램에 의한 비구면 형상 가공에 관한 연구

  • 박준용;권영균;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.280-285
    • /
    • 2002
  • Copy machines have been used in the 3 dimensional shape machining like the non-sphere surface. This study is intended to show the possibility of manufacturing of a non-sphere shape without a exclusive CAM(Computer Aided Manufacturing) software in the process of metallic mold. It has been examined under the two types of working conditions. One is a cutting by manual programming and the other is a cutting by a general-purpose CAM software. Two kinds of output data were compared and analyzed, and data by a manual program were discovered more accurate than those of a general-purpose CAM software. In this study, I came to a conclusion it is possible to manufacture a 3 dimensional shape without a exclusive CAM software.

  • PDF

Tapping Machining Characteristics of Titanium Hard-to-Cut Material (티타늄 난삭재의 탭핑 가공 특성)

  • Lee, Ho-Chang;Kim, Hae-Ji;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.80-86
    • /
    • 2011
  • This study compared and analyzed manual tapping and automatic tapping regarding tapping process characteristics of titanium hard-to-cut-material. Tapping process characteristics of titanium hard-to-cut-material are evaluated as the quality of a screw, wear of a tap, economic analysis, and cycle time etc. The type of screw threads after manual tapping is formed as an irregular type of screw threads, and perfect screw threads are created after automatic tapping. In addition, the chip type after manual tapping process is formed as the discontinuous chip due to work hardening, and the powder type of chip after automatic tapping process is created. In terms of cycle time, an automatic tapping process is shortened by 70% compared to manual tapping process. Insert tip wear of an automatic tapping shown in the process of 5-hole tapping is not found, but hand tap wear for finish cutting is most severe.

Development of a Training System for Lathe Operation Using a Simulator with Relationship between Speed of Tool Feed and Cutting Sound/Shape of Chips

  • Kawashimo, Takashi;Doyo, Daisuke;Yamaguchi, Tatsuya;Nakajima, Ryosuke;Matsumoto, Toshiyuki
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.2
    • /
    • pp.175-182
    • /
    • 2015
  • The recent manufacturing industry in Japan has found it difficult to transfer skills from trained workers to inexperienced workers because the former ages and then retires. This is a particular problem for lathe process, as this operation requires explicit and tacit knowledge, and defining the skills clearly in a manual is difficult. This study aims to develop a training system for lathe operation by using a simulator; this includes formulas that help define the relationship between the speed of tool feed and cutting sound/shape of chips which were proposed in the preceding study. The developed training system is verified the effectiveness.

Plane Surface Generation with a Flat End Mill (평 엔드밀을 이용한 평면가공에서의 가공면 형성기구)

  • Ryu, Si-Hyeong;Kim, Min-Tae;Choe, Deok-Gi;Ju, Jong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.234-243
    • /
    • 1999
  • Using the geometric and the vector methods, three dimensional surface texture and roughness models in flat end milling are developed. In these models, rear cutting effect on surface generation is considered along with tool run-out and tool setting error including tool tilting and eccentricity between tool center and spindle rotational center. Rear cutting is the secondary cutting of the already machined surface by the trailing cutting edge. The effects of tool geometry and tool deflection on surface roughness are also considered. For representing the surface texture more practically, three dimentional surface topography parameters such as RMS deviaiton, skewness and kurtosis are introduced and used in expressing the surface texture characteristics. Under various cutting conditions, it is confirmed that the developed models predict the real surface profile precisely. These models could contribute to the cutter design and cutting condition selection for the reduction of machining and manual finishing time.

  • PDF

Study on Development of the Riding-type Mulberry Harvester (승용식 뽕수확기 개발에 관한 연구)

  • Choe, Yeong-Cheol;Im, Su-Ho;An, Jang-Sik
    • Journal of Sericultural and Entomological Science
    • /
    • v.40 no.1
    • /
    • pp.8-12
    • /
    • 1998
  • The study aimed at development of a riding-type mulberry harvester for mechanical harvest. A riding-type mulberry harvester has been developed to harvest on sloped land with a higher efficiency. It has been implemented over a period of 2 years from 1996 to 1997. The result is as follows. It moves on carterpillar with a level adjusting system. It reduced only from 14.6 hrs to 0.9hrs/10a for cutting in a range of 25 to 80 cm high and possibly used for both spring and autumn. It reduced only the labor requirements of mulberry harvesting by 94 percent, as compared to that of the manual harvest. All related processes, cutting, binding and loading are simultaneously done by this harvester and totally it can reduce 96 percent of the labor requirements, as compared to 20.4 hrs/10a of the manual harvest. The machine compared to improved mulberry harvest efficiency with 11.11a per hour by about 23 times as compared to 0.49a per hour manpower. Cost analysis indicated that the riding-type mulberry harvester saved overall cost by 66 percent from 980,000 won per ha manpower to 330,000 won per ha.

  • PDF

High Quality Tissue Miniarray Technique Using a Conventional TV/Radio Telescopic Antenna

  • Elkablawy, Mohamed A.;Albasri, Abdulkader M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1129-1133
    • /
    • 2015
  • Background: The tissue microarray (TMA) is widely accepted as a fast and cost-effective research tool for in situ tissue analysis in modern pathology. However, the current automated and manual TMA techniques have some drawbacks restricting their productivity. Our study aimed to introduce an improved manual tissue miniarray (TmA) technique that is simple and readily applicable to a broad range of tissue samples. Materials and Methods: In this study, a conventional TV/radio telescopic antenna was used to punch tissue cores manually from donor paraffin embedded tissue blocks which were pre-incubated at $40^{\circ}C$. The cores were manually transferred, organized and attached to a standard block mould, and filled with liquid paraffin to construct TmA blocks without any use of recipient paraffin blocks. Results: By using a conventional TV/radio antenna, it was possible to construct TmA paraffin blocks with variable formats of array size and number ($2-mm{\times}42$, $2.5-mm{\times}30$, $3-mm{\times}24$, $4-mm{\times}20$ and $5-mm{\times}12$ cores). Up to $2-mm{\times}84$ cores could be mounted and stained on a standard microscopic slide by cutting two sections from two different blocks and mounting them beside each other. The technique was simple and caused minimal damage to the donor blocks. H&E and immunostained slides showed well-defined tissue morphology and array configuration. Conclusions: This technique is easy to reproduce, quick, inexpensive and creates uniform blocks with abundant tissues without specialized equipment. It was found to improve the stability of the cores within the paraffin block and facilitated no losses during cutting and immunostaining.

Development of a Belt Pick-up One-row Soybean Cutter (벨트 파지식 1조 콩 예취기 개발)

  • Jun, Hyeon-Jong;Kang, Tae-Gyoung;Lee, Choung-Keun;Choi, Yong;Lee, Chai-Sik;Hong, Jong-Tae
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.373-379
    • /
    • 2010
  • This study was carried out to develop a belt pick-up type one-row soybean cutter, using physical properties and production conditions of soybeans. The prototype soybean cutter consisted of 4 parts: cutting part, conveying part, collecting part, and travelling part. The prototype soybean cutter was designed to cut soybeans planted with a row spacing of 600 mm, and at a height of 30 mm from the bed bottom using a disk saw. Through various trials with different peripheral velocities of the disk saw and forward speed of the cutter, determined ranges of the peripheral velocity of the disk saw cutting soybeans stems were greater than 18.3 m/s. Spacing between pick-up belts (clearance) was in a range of 60~90 mm so that soybeans could be picked at heights greater than 25 cm, and the size and shape of the pick-up belt were determined the conventional manual harvesting method. The optimal ratio between the forward speed of cutter and the peripheral speed of pick-up belts were from 1 to 1.2 by theoretical analysis. the pick-up belts had a $35^{\circ}$ of tilted angle and $90^{\circ}$ of twisted angle to pick up soybeans safely from the plant input to the lower end of the belts and convey soybeans to the upper end of belts nearby a container. The soybeans at the rear container were dropped down on the soybean row with an interval. The effective field capacity of the prototype soybean cutter was 0.136 ha/h, reducing the working hour by 92% when compared with the manual cutting.